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Petschek (1964) has given a qualitative model for fast magnetic field line reconnection,
atspeeds up to a significant fraction of the Alfvén speed. It is supposed that an electric-
ally conducting fluid is permeated by an almost uniform magnetic field which reverses
direction across a plane of symmetry parallel to the field lines. An almost uniform
stream flows steadily towards the plane of symmetry and is maintained by pressure
forces. Magnetic field line reconnection occurs at the origin inside a small central
diffusion region. The reconnected magnetic field is swept away rapidly in two thin jets
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370 A. M. SOWARD AND E. R. PRIEST

aligned with the plane of symmetry. The inflow and outflow regions are separated by
discontinuities at which the tangential components of the magnetic field and fluid
velocity suffer abrupt changes.

Sonnerup (1970) and Yeh & Axford (1970), on the other hand, have given alternative
solutions for the incompressible case which include a second set of discontinuities. Their
solutions are of similarity type, valid over some length scale which is much less than the
overall distance between the magnetic field sources but is much greater than the size
of the central diffusion region. The second set of discontinuities is, however, unaccept-
able for an astrophysical plasma, since they need to be generated at corners in the
flow rather than at the central diffusion region.

This paper presents other solutions for the incompressible case, which are locally
self-similar, without discontinuities or singular behaviour at a second set of dis-
continuities. The solutions are valid everywhere outside the central diffusion region
when the inflow Alfvén Mach number M; (see (2.3) below) is much less than unity and
are valid at large distances from the diffusion region when M; = O(1). The analysis
has been summarized by Priest & Soward (1976). It puts Petschek’s mechanism on a
sound mathematical basis and shows that the discontinuities are not in general
straight but curve away from the incoming flows. Our estimate of the maximum
reconnection rate M, ;... (see (10.9) below) depends weakly on the value of the
magnetic Reynolds number R, . (see (10.7) below). It decreases from 0.2 when
R, . = 10 to 0.03 when R, , = 108,

m, e

1. INTRODUGTION

When two regions of uniform magnetic field Bj, equal in magnitude but opposite in direction,
are placed in contact a current sheet is formed at the interface between the two regions. If the
magnetic field permeates a stationary fluid of finite electrical conductivity the current sheet
thickens and magnetic field is annihilated in a region of ever increasing width / = /(¢*/u0),
where #* is the time, g is the magnetic permeability and ¢ is the electrical conductivity. By
this process magnetic energy is degraded into heat through the ohmic dissipation j*2/o, where
J* is the electric current. Since the electric current is of order By/(ul), the total ohmic dissipation
per unit length of current sheet is of order Bf/(n20l), a quantity which evidently decreases as
time proceeds.

A high dissipation rate can be maintained if there is fluid motion towards the plane of
symmetry. In this case convection of the magnetic field lines can balance the competing effect
of lateral diffusion. A simple dynamical model which isolates the effect has been investigated
by Parker (19734) and Priest & Sonnerup (1975). Consider the two-dimensional steady motion
of a fluid with constant density p, which is referred to rectangular cartesian coordinates x*, y*.
Suppose that the flow is potential and has velocity u* = (Uix*/l, — U;y*/l). A unidirectional
magnetic field b* = (b%(y*), 0) can be maintained, which satisfies Ohm’s law (see (2.10)

below), provided
1 d dzp}

Here Ui and [ are chosen such that
opUil = 1. (1.15)
Since the solution of (1.1a), which takes the form b} = — By(l[y*), as y* — o0, is
¥l
bt = _Bie-y*z/zlzf eté? d¢, (1.1¢)
0

we may identify the length / with the thickness of the diffusion layer in which magnetic field
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FAST MAGNETIC FIELD LINE RECONNECTION 371

annihilation occurs. As before, the total ohmic dissipation per unit length of current sheet is
of order

BY[(@Pol) = UiBi[u, (1.2)
which is independent of the electrical conductivity and simply represents the Poynting flux
towards the null plane. Moreover, since the flow is potential and since the Lorentz force

. 1
j*x b% = — v (ﬂ b;’;2) (1.3)
can be balanced by part of the fluid pressure
1
const —%pu*z—ﬁﬁ bx? (1.4)

the equation of motion (see (2.5) below) is also automatically satisfied.

The kinetic energy of a fluid flow is often increased by the rate of working u* - (j* x b*) of
the Lorentz force. In the above example, though the Lorentz force does work on the fluid, the
character of the motion owes nothing to the presence of the magnetic field. Indeed, the fluid
pressure adjusts its value so that the pressure force does work which is equal and opposite to
the Lorentz force! In general, however, the Lorentz force cannot be balanced by pressure and
truly magnetohydrodynamic (m.h.d.) motions ensue. In a highly conducting fluid an important
new mechanism is introduced into the dynamics due to the presence of the magnetic field. It is
the ability to propagate disturbances along magnetic field lines at the Alfvén velocity b*/,/(up).
Petschek (1964) has suggested that herein lies a mechanism whereby magnetic energy can be
transformed rapidly into kinetic energy. Consider magnetic field convected, as above, slowly
towards the plane of symmetry y* = 0. Suppose, however, that the inflow velocity —u} varies
with the coordinate x* and takes its maximum value on a second plane of symmetry x* = 0.
In consequence a field line initially in the region y* > 0 is convected up to the origin. There
the line is severed and reconnected to a field line in the region y* < 0, so forming an X-type
magnetic field neutral point at the origin. The reconnected field lines are then convected away
from the neutral point in the directions of both increasing and decreasing #*. Evidently the
origin is a singular point in the model and as such may be expected to be the source of dis-
turbances. In fact, four lines emanate from the origin along which disturbances can propagate;
the line in the quadrant (x* > 0, y* > 0) is OA in figure 1. At any point on the line OA
disturbances propagate partially at the Alfvén velocity — b*/,/(up) but are also convected with
velocity u*. The net effect is propagation at the velocity u* — b*/,/(up), tangent to OA. Across
the line OA, often called an Alfvén line (see for example, Dix 1963), discontinuities of the
tangential components of the magnetic field and flow velocity can be supported provided
certain jump conditions are met (see (2.16a) below). As Petschek (1964) observed these dis-
continuities permit the magnetic energy density to drop dramatically across OA in favour of
increased kinetic energy density. Moreover in a fluid of large but finite electrical conductivity
considerable Ohmic dissipation occurs in thin layers, which we will call Alfvén boundary
layers, of thickness Ld in the neighbourhood of OA. As the origin is approached, L decreases
and two such layers, one on either side of the x* axis, merge at a distance L from the origin to
form the central diffusion region of width / (see figure 2). By contrast, it is the enhanced ohmic
dissipation occurring in the central diffusion region alone (cf. (1.2) above) which was initially
emphasized in the pioneering work of Dungey (1953, 1958) and Sweet (19584, ) ; see also
Parker (1963).

47-2
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372 A. M. SOWARD AND E.R. PRIEST

The discussion of Alfvén lines in the previous paragraph refers solely to incompressible fluids
in which the sound speed is infinite. In a compressible fluid, the incompressible limit is only
applicable when the gas pressure p, is large compared with the magnetic pressure py,. Astro-
physical plasmas are, of course, highly compressible and in regions, where the magnetic fields
are large, we may reasonably expect that pm > p,. Evidently the situation is now more com-
plex, because, in addition to Alfvén wave propagation, disturbances can be propagated by
magneto-acoustic waves. As the ratio pm/p, is increased from zero, Petschek & Thorne (1967)

. C. C.
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F1cure 1. The streamlines #* and the magnetic field lines b*, which according to our solution describe the Petschek
mechanism, are sketched in (). The field line through the neutral point at the origin O is the separatrix.
The corresponding streamlines for the characteristic velocities v = u* + b*[,/(up) are sketched in (b) and the
arrows indicate the direction in which information is propagated. The inflow region I is separated from the
outflow region II by the Alfvén line OA. The structure of the mathematical problem changes also across the
Alfvén line OB.

have suggested that, in general when the external magnetic field is non-uniform, as envisaged
by Green & Sweet (1966), the Alfvén line discontinuity separates into a slow shock and an inter-
mediate shock. Nevertheless, if the external magnetic field is almost uniform, as considered in
this paper, the separation does not occur and we are left with the slow shock alone. In this
case the analyses of the compressible and incompressible models are in many respects simi-
lar. The main difference results from the increase of gas pressure downstream of the shock,
which leads to a corresponding density increase in the compressible case. The only quantita-
tive differences in Petschek’s original models were numerical factors dependent on the ratio of
gas densities on either side of the shock. Though there are obvious shortcomings in restricting
our investigation to incompressible fluids, it is reasonable to suppose that most of the important
features of the reconnection process are represented well by the model.

It is widely believed that the rapid release of magnetic energy into kinetic energy and directly
into heat by magnetic field line reconnection provides the energy source for solar flares. Whether
the energy conversion occurs principally in the central diffusion region by the Sweet mechanism
or across standing waves in the Alfvén boundary layers, as in the Petschek mechanism, depends
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FAST MAGNETIC FIELD LINE RECONNECTION 373

on the relative sizes of the length L of the central diffusion region and the overall length scale L,
characteristic of the flow. If L and L, are comparable, then one has the Sweet mechanism. If,
on the other hand, L is small compared with L,, the ohmic heating in the Alfvén boundary
layers alone is likely to exceed that in the central diffusion region by an order of magnitude.

x*

*

v ~Bil\(up)

*

y

Ficure 2. In the inflow region I, the Alfvén number M (see (3.38) and (3.34)) increases as the origin O is ap-
proached and attains the value unity when r* = e¥7 L. The solution in §§3-7 is only a valid approximation
to the non-dissipative equations when M is large and so ceases to be valid when r* = O(%). Furthermore it
is only valid outside a strip of width order £ which bounds the Alfvén line OA and is shaded in the figure
(see §7). When dissipative effects are included the above approximate solution requires modification in
certain small regions. In particular an Alfvén boundary layer forms about OA of thickness order L§, pro-
portional to 4r* (see (8.8)). It is confined by the convective effect of the characteristic velocity ¥, which is
indicated in the figure by the arrows on the dashed lines marking the edge of the layer. The central diffusion
region of length order L and width order [ is formed by the overlap of the Alfvén boundary layers in different
quadrants. The ratio /L is of order M;( = U,+/(up)[B,), where the inflow values of the flow velocity U; and
magnetic field strength B; are calculated at x* = 0, y* = ML (= O(/)). Provided the ratio .Z// is small
(M; <€ 1), the shaded region lies totally inside the Alfvén boundary layer, as indicated in the figure. When
ZL|l is large (M; > 1), however, the dashed lines only extend outside the shaded region at large distances
from the origin. Finally, estimates of the reconnection rate M, in §§3 and 10 are based on the overall size
L, of the region considered.

Yeh & Axford (1970), however, point out that though this concentrated electrical discharge
may lead to remarkable effects, they should be regarded as secondary. The main effect is the
lowering of the magnetic energy density across the Alfvén lines. In any event, the combined
effect of ohmic dissipation and the rate of working of the Lorentz force in a steady state is

measured by
—VE.(E* x b* ), (1.5)
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374 A. M. SOWARD AND E. R. PRIEST

where E* is the electric field (see, for example, Roberts (1967), p. 21). Since E* is constant
(see §2 below), the conversion rate in a region bounded by a closed curve C is readily calculated
from (1.5). It is

E* ff b*-da*/u = EXI*, (1.6)

where I* is the total electric current flowing across the region. Vasyliunas (1975) estimates this
quantity for a variety of reconnection models in his recent review.

The main objection to the basic Sweet mechanism is that magnetic field line reconnection
cannot release magnetic energy at a rate fast enough to produce solar flares (Parker 1963).
Parker (19736) points out, however, that dissipation rates may be increased considerably if
small scale plasma instabilities are invoked. If that proves to be the case the objections to the
Sweet mechanism evaporate. On the other hand, the estimate of the reconnection rate based
on the Petschek mechanism is itself sufficiently large. Though the estimate depends on the
electrical conductivity, its dependence is rather insensitive to the value of o (see (10.7), (10.8)
below). Ever since Petschek (1964) proposed his model with almost uniform external magnetic
fields more detailed investigations have revealed several difficulties and certain curiosities. Of
particular note is the reversed magnetic field phenomenon suggested by Green & Sweet (1966)
for the more general case in which the external magnetic field is non-uniform and the second
set of discontinuities advocated by Sonnerup (1970) and Yeh & Axford (1970). The net effect of
these investigations and others is to render Petschek’s original model suspect. The main aim of
this paper is to allay these fears by placing Petschek’s model on a sound mathematical basis.
In achieving this goal the model developed here indicates the importance of various effects
isolated by the recent investigations. These effects lead to minor discrepancies between our
model and Petschek’s. The differences are, however, by no means as dramatic as might have
been suspected from the analyses of Green & Sweet (1966), Sonnerup (1970) and Yeh &
Axford (1970).

In order to understand the Petschek mechanism in detail and to appreciate the main source
of difficulty, it is useful to introduce theidea of characteristics. When all dissipations are neglected
the m.h.d. equations are hyperbolic. Indeed, for the special case in which the total pressure
(hydrodynamic plus magnetic) is constant, it is well known that

vf = u* £ b*/(up) (1.7)

is constant on Cy. characteristics. These are the streamlines for the fictitious flow defined by the
characteristic velocity »%. Sonnerup (1970) takes advantage of this simple property in the con-
struction of his reconnection model (see § 3 below). When the total pressure is non-uniform, the
pressure gradient may be regarded as providing a continuous distribution of sources for the
hyperbolic wave equation everywhere in the flow field. In other words, not only is information
propagated along Cy characteristics at speeds v but also at infinite speeds due to pressure
responses. The latter mechanism is a manifestation of infinite sounds speed in an incom-
pressible fluid. Despite the added complication of the pressure term, the notion of characteristics
is, however, important in our problem as they represent lines along which discontinuities can
propagate. Indeed, we have already noted in describing Petschek’s model that discontinuities
persist on the characteristics emanating from the origin O.

A typical magnetic field and flow pattern is sketched in figure 14, while the corresponding
characteristics are sketched in figure 14: the configuration is symmetric about the planes
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FAST MAGNETIC FIELD LINE RECONNECTION 375

x* = 0, y* = 0. Reconnection of magnetic field lines takes place at the origin O inside the
small central diffusion region. The C_ characteristic OA (or second Alfvén line) divides the
magnetic field and flow into two distinct regions. In the inflow region I the flow is sufficiently
slow for inertia to be neglected and an approximate magnetostatic balance is achieved. In the
narrow outflow region II the flow velocity is fast and comparable with the Alfvén velocity in
region I. Moreover the C characteristic OB (or first Alfvén line) separates region I into two
parts, a fact which is not apparent from figure 1a. From figure 15, it is clear that information is
propagated from Oy* to OB and from OB to Oy* along C_ and C characteristics respectively
and similarly in region II between the lines OA and Ox*. The situation is dramatically different
in the remaining region. Here information is propagated along both C, and C_ characteristics
from the line OB towards OA, but never in the opposite direction! Consequently, the upstream
conditions to the left of OB can adjust (see also the discussion of the boundary conditions
at infinity following (2.18) below) so that the flow and magnetic field vary continuously across
the first Alfvén line, while the flow approaching the second Alfvén line is unaware of the
impending discontinuity.

According to the steady non-dissipative equations the difference in character of the three
regions distinguished above is not apparent, since % can be replaced by —o¥ without ap-
parently altering the governing equations! For this reason both the models of Sonnerup (1970)
and the exact similarity solutions of Yeh & Axford (1970) (see §3 below) permit discontinuities
or singular behaviour to persist at both the Alfvén lines OA and OB. Indeed within the frame-
work of their analyses both sets of discontinuities are necessary. If, however, we invoke time
dependence or equivalently take account of the directional properties of the characteristics (see
figure 1), we see that discontinuities at the first Alfvén line are unrealistic. For, as Sonnerup
(1970) has pointed out, the discontinuity across OB must be initiated externally and propagated
towards the origin. In practice this requires four such discontinuities to have a common point
of intersection (in our case the origin). Vasyliunas (1975) has emphasized that this fortuitous
coincidence is most unlikely but nevertheless suggests that Sonnerup’s (1970) model may be the
prototype for a class with faster reconnection rates than Petschek’s (1964). For our unbounded
models these discontinuities can only be initiated at infinity. Furthermore, even if the dis-
continuities did by chance intersect, Yeh & Axford’s model still fails; as shown in § 8 and already
noted by Vasyliunas (1975). Once the effects of finite electrical conductivity and/or viscosity
are taken into account the solutions on either side of OB cannot be connected. The exception is
Sonnerup’s (1970) solution, which fails in an unbounded region, but remains valid if the dis-
continuity is initiated at a finite distance from the origin.

In § 2 the governing equations and boundary conditions appropriate to an unbounded
region are established in dimensionless form. The mathematical problem is characterized by
three dimensionless numbers, namely the Alfvén number Mj, the magnetic Reynolds number
R 1 and the Reynolds number R; ; (see (2.3), (2.12) and (2.8) respectively), the subscript i
referring to values just outside the diffusion region on the y-axis. In §§ 3—7 we are concerned with
the non-dissipative equations, for which the Alfvén number M is the only relevant parameter
(see (2.15) below) and is assumed to be of order 1 or smaller. A solution (3.2) is sought, almost
self-similar in form, such that a magnetostatic balance is achieved in the inflow region and there
is no singular behaviour at OB. Analytic progress is made by finding asymptotic solutions of
the resulting equations, valid when the parameter R = In (r*/.%), where the ratio Z/L only
depends on M; (see (3.36) below) and r* is the distance from its origin, is much greater than
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unity. There is in essence only one independent solution and for this M provides a measure
of the anticipated size of the diffusion regions.

The prime consideration in the development of the reconnection model in § 3 is that no
discontinuity or singular behaviour should be permitted at the first Alfvén line OB. This condi-
tion is built neither into Petschek’s original analysis nor into the more recent refinements of
Vasyliunas (1975) and Roberts & Priest (1975). To the order of accuracy considered in their
analyses, the flow is irrotational and the magnetic field is current free in the inflow region I.
Consequently the condition at OB is automatically satisfied and its importance is not apparent.
We find, however, that the condition severely restricts the solution to the reconnection problem
and would expect that the development of the above analyses to higher orders would encounter
serious difficulties. A wide class of similarity solutions is attempted in appendix A but none are
found to satisfy the required condition at OB. The analysis suggests, however, that the solution
in the inflow region I is almost described by the similarity formulation advocated by Yeh &
Axford (1970) (see (3.2) below). In fact, their similarity form describes the Petschek mechanism
locally and it is only over very large radial distances that there is any noticeable variation of
the similarity functions through their dependence on the parameter R. To lowest order a state
of constant total pressure is realized as in Sonnerup’s (1970) model and the magnetic field lines
and streamlines are almost straight. Slight bending of the field lines, which is evident at a higher
order, permits Petschek’s configuration to be realized without additional discontinuities across
the Alfvén line OB. In the zero order approximation at least, the Alfvén lines collapse on to the
axis of symmetry and so the model, regarded as a member of the Yeh & Axford (1970) class of
similarity solutions is a degenerate case. When the finite width of the outflow region II between
the Alfvén line OA and the x*-axis is taken into account, the details of the solution can be
deduced most easily by the introduction of a boundary layer coordinate (see (3.14a) below).
The results confirm all the assumptions and principal force balances predicted by Petschek
(1964). It is found, however, that the Alfvén line OA is not straight but curves slowly away
from the incoming flow. Consequently the Alfvén number A (see (3.38¢) below), which pro-
vides the important measure of the merging (or reconnection) rate of the magnetic field lines,
decreases with distance from the origin. Since variations with distance are small, the Alfvén
number is effectively constant and the Alfvén line is effectively straight on any prescribed length
scale and, in particular, on the largest length L, of interest. On this large length scale Petschek’s
estimate of the maximum reconnection rate is confirmed to within a factor 2 (see (10.9) and
figure 8 below).

To a high order of accuracy the magnetic field and fluid velocity in the inflow region I are
free of electric current and vorticity. That part of the solution which is potential can be approxi-
mated uniformly throughout region I by complex potentials. These are developed in § 4. Since
the magnetic field here is not completely uniform, a small positive radial total pressure gradient
is predicted (see (4.19¢) below). The pressure gradient persists into the outflow region II and
its influence on the flow there is investigated in § 5. In particular, it is found to induce singular
behaviour in the flow and magnetic field near the Alfvén line OA as predicted by Yeh &
Axford (1970). We find, however, that the singularity is not as severe as their model might sug-
gest (see §§ 7 and 8 below).

The analysis in §§ 3-7 yields two technical difficulties. First, the expansion procedures reveal
the existence of an arbitrary constant a (see (5.11) below), which may be absorbed into the
definition of A;. The existence of the constant, which reflects a similarity property of the solu-
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FAST MAGNETIC FIELD LINE RECONNECTION 377

tions, leads to a degeneracy which is overcome only by the introduction of the In R terms in
§§ 4 and 5 (see, for example, (4.19), (5.1) below). Second, the asymptotic expansions break
down in a thin region containing the Alfvén line OA, which we call an Alfvén layer. Here the
singular behaviour of the flow and magnetic field is associated with singular concentrations of
vorticity and electric current. The lack of significant vorticity and electric current in region I
implies, therefore, that terms of a high order must be considered before any singular behaviour
to the left of the Alfvén line OA can be predicted. These small concentrations of vorticity and
electric current (see (6.39) and (6.32) respectively) are determined by the lengthy analysis of
§ 6. With the exception of the Alfvén layer discussed in § 7, the results of § 6 conclude the
development of solution to the non-dissipative equations and at the same time indicate how the
analysis may be systematically extended to any required order.

As remarked earlier, dissipative effects are important in Alfvén boundary layerst located
near the centre of the Alfvén layers. In § 8 the structures of these Alfvén boundary layers is
determined and for the particular case M; € 1 the highly complex central diffusion region,
where the Alfvén boundary layers merge, is described qualitatively. In § 9 the applicability of
our solution to the case M; = O(1) is discussed, while in § 10, the principal conclusions are
summarized and bounds on the reconnection rate are derived.

2. THE MATHEMATICAL PROBLEM

A steady, incompressible, two dimensional hydromagnetic flow of a fluid, density p, is
referred to cylindrical coordinates (r*, 6, z*). The line & = 0 is the positive #* axis. The magnetic
field b* = (b}, b}) and fluid velocity u* = (uf, uj) lie entirely in the r*, 6 plane and depend
only on the coordinates 7* and 6. On the other hand the electric field E* is assumed to lie in the
z* direction and, because of the Maxwell equation curl E* = 0, E¥ is constant independent
of both position and time.

It is convenient to adopt the length L of the central diffusion region as our basic length scale
and to introduce the non-dimensional position vector

¥ = &*[L. (2.1)

The magnetic field and flow velocity are made dimensionless by the change of variables
b*|B; = M}b, u*|U = Mitu, (2.2)
where Bj is the magnetic field strength at the edge of the diffusion region and U is the inflow

velocity. The constant M is chosen so that |u| equals |b|, when the fluid velocity equals the

Alfvén speed. It is the Alfvén number
M; = U)Wy, (2.3q)

where Vi = Bil|/(up) (2.30)

is the Alfvén velocity based on the magnetic field strength B;. In terms of the magnetic vector
potential x and stream function ¥ the magnetic field and fluid velocity may be written as

10 0 10 0
b (A% %), _ (LW W) (2.4)
r 00’  Or r 00 or
1 The terminology here differs slightly from that adopted by Hughes & Young (1966), who abbreviate the

name Alfvén boundary layer to Alfvén layer. We usc the latter term to include the more extensive singular region
bounding the Alfvén line.

48 Vol. 284. A.
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378 A. M. SOWARD AND E. R. PRIEST

Substitution of (2.1)-(2.4) into the equation of motion yields (see, for example, Yeh & Axford
1970)

o, u, P Ax, b 0
_a(lﬁ, uy) - _a£ o(xs bﬁ>+b by + (M R, 1)—176_0) (2.50)

3, 0) UM = T30 9(r, 0) o

where pU; Vi{p— 4b%} is the hydrodynamic pressure, p is the non-dimensional total pressure,

o x) _ o o 2.
a( 0) or 00 90 or ’

is the Jacobian, (LIUY) w* = Mt 0 = — M3V (2.7

is the dimensionless vorticity and Ry = LVifv (2.8)

is the Reynolds number (v is the kinematic viscosity). Here it is anticipated that fluid escapes
from the central diffusion region at the Alfvén velocity V1. According to the frozen field equation,
the constant electric field can be determined by the conditions at the edge of the diffusion
region. It is

E¥ = U;B;. (2.9)
Elsewhere Ohm’s law becomes
(MER, ) = 1+ (uxb), (2.104)
or equivalently rl a&)((l‘r&’ (9)) = 14 (M} R, ) V2y, (2.100)
where (uL|By) j* = M}j = — M} V2y (2.11)
is the dimensionless electric current and
Ry, = LVuo (2.12)

is the magnetic Reynolds number. The width
[ = (MR, )L (2.13)

of the central diffusion region is determined by the condition that the Reynolds number
{Uypo based on the inflow velocity is unity (see (1.1)).

Since the total pressure p = p,+pm is continuous everywhere, the value of the gas pressure
in the central diffusion region, which is at least comparable with the magnetic pressure, must
be of order B?/2u. Consequently the outflow, driven by the downstream pressure gradient, has
speed comparable with Alfvén velocity V;. Furthermore, since the volume flux per unit width
into and out of the central diffusion region are of order U; L and V;!/ respectively, mass conserva-
tion indicates that

L = O(Uy/}) = O(My). (2.14a)
Together with (2.13), the result yields the further estimate
R, = 0(M®). (2.140)

The rate of merging of magnetic field is either slow (M; < 1) or fast (M; = O(1)). In the former
case the analysis of this paper is valid everywhere outside the central diffusion region. In the
latter case L and.Z (see (3.36) below) are both of order / and our solution is only valid when
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FAST MAGNETIC FIELD LINE RECONNECTION 379

In (r*/l) is large. Since / is extremely small it may reasonably be supposed that our solution will
be valid throughout most of the reconnection region except for a relatively small neighbourhood
of the origin. In either case we find that the importance of dissipative processes at a distance
r* is measured by Ry = (r*L) (My/M):R,, , (see (8.8b)), where M is the local Alfvén number.
Since the local magnetic Reynolds number Ry, increases indefinitely, as 7* — oo, dissipation is
negligible almost everywhere in the flow. The ensuing approximations to the equations are
effected by neglecting viscosity and Ohmic diffusion and setting

/Ry = /Ry, = 0. (2.15)

Dissipation, however, is important in an Alfvén boundary layer containing the second Alfvén
line, at which

V=X (2.164)
indicated by the line OA in figure 1. Across this diffusion region, which has zero width in the
limit (2.15), discontinuities in the tangential components of u and b are permitted. The normal
components are, however, continuous together with the total pressure p. Within the framework
of our steady state model our analysis also shows that an Alfvén boundary layer cannot be
supported across the first Alfvén line, at which

v=-% (2.16)

indicated by the line OB in figure 1. Here no discontinuities are permitted.

Owing to the symmetry the flow and magnetic field are investigated only in the quadrant
0 < 0 < in. Magnetic flux y is measured from the separatrix, which is the magnetic field line
passing through the neutral point at the origin O and on which y is zero. To the right of this
line the magnetic field is reconnected and y is positive, while to the left y is negative. Symmetry
conditions require that the magnetic field is normal to the lines § = 0 and }n. Consequently y
takes its maximum and minimum values at @ = 0 and = respectively where

ox/e0 = 0 (6 = 0, in). (2.17a)

Moreover, the lines @ = 0 and {n are streamlines and are therefore lines of constant . Since
the streamlines intersect at the origin the value of ¥ on each is the same and can be chosen
arbitrarily. We choose
Y =0 (0=0,1n), (2.175)
so that elsewhere in the quadrant ¥ is positive. Inspection of figure 3 indicates that the Alfvén
line OA is located in the region of reconnected magnetic field. Since the character of the
magnetic field and flow changes dramatically across this line we call the regions to the left and
right of it,
regionI: in>0>06 >
g 2 (lﬁ X)a} ( 2.1 8)

region II: @ >60>0 (x > ¢),

respectively. Here @ is not a constant but a function of radial distance from the origin.

In an inviscid, perfectly conducting fluid, it is impossible to prescribe precise boundary con-
ditions on the flow and magnetic field, as 7* — co. This difficulty is peculiar to the problem of
finding steady state solutions and is avoided if a time-dependent problem is considered. In that case
disturbances can only propagate as Alfvén waves up to a finite distance of order Vj¢* in time ¢*.
As t* tends to co and a steady state is approached, the particular conditions initially applied at
infinity may be ultimately disrupted. Consequently, in a steady state the prescription of boundary

48-2
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380 A. M. SOWARD AND E. R. PRIEST

conditions at infinity may overpose the problem. One assumption is made, however, namely
that inertia is insignificant in the inflow region, as r* — oo.

In the following sections no attempt is made to determine a complete solution to the problem
posed everywhere in the fluid. In particular, the detailed character of the central diffusion
region is not determined. It is believed, however, that the réle of this region is passive inasmuch
as it adjusts to the inflow conditions. The external conditions at some large reference distance
L., however, are also influenced by the inflow conditions immediately outside the central
diffusion region. Consequently the inflow speed at the distance L, cannot necessarily be any
fraction M, of the local Alfvén speed (see also Priest & Cowley 1975). In the case of slow
merging rates (M; < 1), it would appear natural, following Petschek (1964) and Vasyliunas
(1975), to seek asymptotic expansions of the solution outside the central diffusion region which
are based on M; small. In order to obtain asymptotic expansions which are uniformly valid as
r* — 00, it transpires instead to be more convenient to attempt similarity solutions, whose accuracy
improves in this limit.

<

®
S
<) B

Ficure 3. The stream function ¥ and the magnetic potential ¥ are plotted against 6, for fixed r, in the interval
0 < 0 < }n in accordance with the solution sketched in figure 1. The Alfvén lines OA and OB are located
at 0 = O and 0, respectively. The separatrix at which y = 0, islocated at § = 6,. Only the boundary condi-
tions illustrated by the graphs and not the shape of the curves are assumed in the derivation of our solution.

Only four assumptions are made in this paper, namely
(i) The inflow Alfvén number M; is of order 1 or smaller.
(ii) On the length scale L,, the inflow magnetic Reynolds number R,, , is large.

(iii) The solution has similarity form on any length scale lying between L and L, (the ‘local’
similarity assumption).

(iv) The magnetostatic approximation holds in the inflow region, as r* — 0.

Assumptions (i) and (ii), together with the estimates (2.145), (10.7), (10.8) imply that the
ratio Lo/L is large consistent with the similarity assumption (iii) and that the inflow Alfvén
number based on the external conditions is small even when M; is of order 1. Furthermore, we
conclude on the basis of assumption (iii) and (iv) that the magnetic field in the inflow region is
force-free and almost uniform at large distances. All similarity models in which the gas pressure
is comparable with the magnetic pressure (i.e. the wider class of magnetostatic models envisaged
in (iv)) in the inflow region are rejected (see appendix A). Finally since the external conditions
for steady state models cannot be prescribed arbitrarily, we may speculate that the non-uniform
external conditions envisaged by Green & Sweet (1966) cannot be maintained and that the
difficulties that they encounter will not arise.


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FAST MAGNETIC FIELD LINE RECONNECTION 381

3. THE SIMILARITY SOLUTION

When the total pressure is constant everywhere in the fluid, solutions of the steady non-
dissipative equations governing the flow are extremely simple and have the property that the
characteristic velocities # + b are constant on Cy characteristics. The result implies that the Cy
characteristics are straight and u, b are constant everywhere except possibly for discontinuities
across isolated C. characteristics. Sonnerup (1970) has invoked this property to advantage in
his solution of the reconnection problem. Thus in the quadrant illustrated in figure 1, Sonnerup
allows for discontinuities at one C, and one C_ characteristic, while elsewhere the flow and
magnetic field are uniform. When both characteristics pass through the neutral point the
solution is of self-similar form and a special case of the complete class of exact similarity
solutions derived by Yeh & Axford (1970), in which total pressure is not necessarily constant.
All these solutions unfortunately fail to satisfy the condition that there should be discontinuities
across only the Alfvén line OA (see figure 1).

The most important feature of Yeh & Axford’s (1970) similarity solution (z = 0 in (3.1)
below) is that no natural length #, at which inertia and Lorentz forces are comparable, is
defined (this is not the case when n # 0). In fact, the magnetic field and flow velocity are
constant on lines of constant . Consequently along these lines the relative importance of the
inertia to the Lorentz forces is everywhere the same. Yeh & Axford’s model also has the un-
desirable feature for many applications that the ratio of the gas to magnetic pressure increases
indefinitely with distance. By contrast, in common with Petschek (1964), we search for solutions
in which inertial forces in the inflow region are negligible by comparison with the Lorentz force
so that here an approximate magnetostatic balance is achieved. (It turns out that to a high
order of approximation the magnetic field is force free; j x b = 0.) Upon neglect of the inertia
term from the equation of motion (2.5), the reduced non-dissipative equations admit a wide
class of similarity solutions which take the form{

¥o=rtg(0), x =rif(0), p=r"PO) (n>0). (3.1)

Provided 7 is positive and r large, the representation (3.1) is compatible with the neglect of
inertia. Now according to (2.2) and (2.4), g and fare typically of order M# and M;? respectively.
It follows that the magnetostatic approximation ceases to be valid at the distance Z of order
ML, where Y and y are typically the same size. Since / is of order M, L, the similarity solution
is likely to be valid right up to the central diffusion region provided ¥ < [ or equivalently
M; <€ 1. Even for M; of order 1, however, the region near the origin not described by the
similarity solution is likely to be small comparable in size to the diffusion region.

The possible implications of a solution taking the form (3.1) are discussed at length in
appendix A where in order not to obscure the main issues it is assumed that M, is order 1.
The case (ii), described there, is closest to the accepted picture of the reconnection process.
For that case, (3.1) provides a first approximation to the solution everywhere except in the
vicinity of the outflowing jet near 6 = 0. Here the Alfvén line OA is located at § = @ where &
is order r—27/0+2m) and tends to zero, as r - co. When 6/0 is of order 1, inertia and Lorentz forces
are comparable. The resulting boundary layer structure may then be described by a new
similarity solution for which a convenient similarity variable is r2#/-+2m g,

1 The more general class based on ¥ =r7g(r%0), where p and ¢ (> 0) are constants, is applicable only in thin
boundary layer regions (see the following paragraph and Appendix A).
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382 A. M. SOWARD AND E. R. PRIEST

As in Yeh & Axford’s (1970) class of exact similarity solutions, no solution is found in either
case (ii) or (iii) which does not suffer discontinuity or exhibit some singular behaviour at the
first Alfvén line OB. The solutions (3.1) are thus rejected. The main source of difficulty appears
to evaporate in case (ii), as # - 0, and suggests that the n = 0 similarity form is close in some
sense to the actual solution. We are led to speculate, therefore, that i, y and p are given by

v =r8R,0), x=1f(R0), p=pR,0), (3.2)

where g, fand p vary weakly with respect to radial distance through their dependence on
R =Ry+Inr = In (r*|&). (3.3a)
The arbitrary constant Ry =1In(L|%) (3.30)

is to be chosen later (see (3.36) below) at our convenience. Guided by the results of appendix A,
case (ii), we anticipate that the solution is valid everywhere, except near 0 = 0, for sufficiently

large R and assume that O(R) >0, as R-oo. (3.4)

(a) The equations

In terms of the new variables the velocity and magnetic field are

o= [5h-ler))} - () @9
The vorticity and electric current are

o =—(1r) Dg, j=-r)2f (3.64)
where 2 = 0%/00%+ (1 +0[0R)2. (3.60)

In the case of negligible viscosity (v = 0) the equation of motion (2.5) becomes
oo OS50~ B Yo
RTINS R L
Restricting attention to the case of infinite conductivity, Ohm’s law (2.10) reduces to the frozen
field equation af_i_fag 3ef) _ 5.5)

00 9O(R,0)

(b) Lowest order outer solution

Far from the origin we anticipate that (1/g) 0g/0R, (1/f) Of/OR and (1/p) 0p/OR are all small and
order R~ In a first approximation to equations (3.5) to (3.8), therefore, it is reasonable to
neglect all partial derivations with respect to R except for the term —0p/0R in (3.74), which
determines the radial pressure gradient. The reduced equations are then identical with the
equations investigated by Yeh & Axford (1970). Since by hypothesis inertia and therefore the
left hand side of (3.7) is assumed unimportant at large R, (3.7a) becomes

s (55+7)- (3.9)
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Consequently p is of order Rf? and hence (3.75) is dominated by the term —0p/00. It follows
that to lowest order p is independent of 6 and so (3.9) can be integrated once yielding

(f100)* = frrax—2(0p[OR) In (f]fmax) =/ (3.10)

where — f;,., is the maximum value of —f achieved at 6 = irn (see (2.174)). As in appendix A,
case (i), if 0p/OR is negative f is never zero and so there is no reconnection. Provided 0p/OR is
positive, however, reconnection is possible and the reconnected magnetic field is bounded by
the curve 0 = 0,, where

0 = b= [ driy(1=2((0pIOR) fRu) In 7= 77, (3.11)

and f(6,) = 0. Now, the magnetostatic approximation is effected by the limit g/f— 0, as
R — co0. This limit is achieved everywhere except at the angle ¢ = 0, to which we assume both
0, and O converge, as R—> oo (see (3.4) and figure 2). Since the integral in (3.11) is less than
1w, the limits

0p—~0 and (0p/OR)[f2ax—> 0 (3.12)

are equivalent. Consequently in the lowest order approximation to (3.7a) the radial pressure
gradient is negligible. Upon neglect of 9p/0R in (3.9) it becomes clear that the solution which
satisfies the boundary condition, 9f/00 = 0 at 6 = 0, (see (2.174)) is

S = —asin0, (3.13q)

where a is as yet an undetermined function of R. The corresponding lowest order approximation
to the frozen field equation (3.8), which satisfies the boundary condition, g(}n) = 0 (see

(2.170)), is
g = (1/a) cos 0. (3.130)

(¢) Inner region equations

Though the boundary conditions at & = }r have been satisfied, no attempt has been made
to satisfy the boundary conditions (2.17) at & = 0. In the vicinity of & = 0 the neglect of inertia
is unjustified and consequently the approximations leading to (3.13) breakdown. In order to
develop an approximate solution in the neighbourhood of @ = 0, it is convenient to stretch the
angle 0 by introduction of the boundary layer coordinate

£ =10/0 (3.144)
and to make the change of variables

f=FRE), g=GRE, p=PRE. (3.14b)

The choice of boundary layer coordinate ensures that the Alfvén line OA at which discontinui-
ties are permitted is located at £ = 1. The transformation from the outer R, 6 coordinates to
the inner R, § coordinates is facilitated by the identities

w ] [0,
OR OR 0 o(f,8) _ 1O(F,G)
6 6 2

where the prime denotes differentiation (@' = dO/dR).
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In terms of the boundary layer coordinates the velocity and magnetic field are

- [o% - (555 B
o [4F. (- 5e) |

The radial component (3.74) of the equation of motion becomes

2 ’ 2
*G (G, 1/0 aG/ag)+@2( G 6 aG)

TR Y CtrTotE

R0 °
oP © 0P 02F _O(F, 1/ 0F[0f) OF O’ _ 0F\?
—@ (L _Z &2 il 92 =T
(aR 0 §a€)+Fag2+6) 3R D +6 (F+6R @éag) . (3.17a)
From the f-component (3.75) of the equation of motion it is sufficient to notice that
oP G* F?
Consequently for small @ (large R), the boundary layer approximation, in which P is assumed
independent of £, will be well founded. Finally the frozen field equation (3.8) transforms almost
trivially giving oF

g% pOG 3G F)
Catfwamn = ° (3.18)

(d) Lowest order inner solution

As in the case of the outer solution described above equations (3.16)—(3.18) are approximated
on the basis that 0/0R is order R~1. Thus retention of the dominant terms in (3.17a) yields the
equation
G F _

o _Fé—g?+@P (P = P(R)), (3.19)

which describes the balance of inward convection of radial momentum (u,/r) (0u,/00), the corre-

G

sponding magnetic term (b,/r) (0b,/060) and the radial total pressure gradient 9p/0r. Similarly
(8.18) reduces to
oF _0G
~—Gé—£—+F~a—g = 0. (3.20)
Differentiating (3.20) with respect to £ and eliminating 02G/0£% from the result and (3.19)

yields
2
(G*—F? F _ O*P'F. 3.21
082

The equation has two singular points § = 1, {5 at which F(1) = G(1) and F(¢3) = —G(&p).
The former corresponds to the Alfvén line OA; the latter corresponds to the Alfvén line OB.
Since our solution to (3.19) and (3.20) must be analytic at the singular point £ = £, it follows
that @*P' F(£y) is zero. Both @ and F(£z) are non-zero, however, and so we must conclude
that the pressure gradient is negligible in the first approximation. It follows that 02F/0£2 = 0
everywhere except at the point £ = 1. At this point F and G are continuous, while 0F/df and
0G[0§ may suffer discontinuities. The former condition ensures the continuity to lowest order
of the normal component of magnetic field and velocity across the Alfvén line, while the latter
condition allows for the possibility that the tangential components of these quantities may
jump in value.
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In region II, (3.19) and (3.20) constitute a third order pair of differential equations having
three boundary conditions, namely G = 0F[/0f = 0atf = Oand F = G at £ = 1. The unique

solution is G =40t F=,0 inll (3.224q)

The solution exterior to the Alfvén line has the two boundary conditions F = G = /@ at{ = 1.
The solution is restricted further by the requirement that, as £ 0o, G matches with g, as
0 — 0. The latter constraint implies that G tends to a function of R alone, as £— co. Hence the
required solution is unique and given by

G =,0, F=,012-£ inl, (3.225)
from which it can be seen that the Alfvén line OB, at which F = — G, is situated approximately
at £ = 3. Now, as £+ oo, G and F have the asymptotic forms

G—>,\O, F> -0t =-0//0, (3.234)
while, as 6 - 0, g and f have the asymptotic forms
g—~>1la, f— —ab. (3.230)
Evidently matching is achieved if
a = 1/,/0. (3.24)

Unfortunately, since @ is still an unknown function of R, the lowest order solution is still not fixed.

(e) Higher order inner and outer solutions in region I

Continuity of magnetic field and fluid velocity across the Alfvén line OB (§ = 3)7 is the
vital condition which ultimately determines the solution uniquely. We, therefore, proceed to
determine a better approximation to G and F'in region I by setting

G =J0+G, F=,02-£+F (3.25)

From (3.17a) and (3.18) it is found that G and F satisfy the linearized equations

oG o2F P
\O [6?—(2——5) a—g-z—] = 0P +30" (P = P(R)), (3.264)
oF 01,
JO [—@ +G+(2-§) a_g] =10, (3.265)
where the radial pressure gradient may now be significant. Differentiation of (3.265) with
respect to £ and elimination of 92F/0£2 from (3.26) yields

02G , ,
JO[1 ‘(2‘5)2]@ = O2P' + 10", (3.27)

According to an argument similar to that below (3.21) the right hand side of (3.27) is necessarily
zero at £ = 3, implying that
P = 1/26 + constant, (8.28)
and one can show from (3.26) that G and F are both linear functions of &.
In order to determine @ it is unnecessary to consider region II. Instead we continue the
investigation of region I and seek a better appoximation to the outer solution. Note first that the

1 This identification is approximate: when higher order terms are considered we see that OB is located at
£ = 3+O0(R™1) (see, for example, (6.5)).

49 Vol. 284. A.
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386 A.M.SOWARD AND E.R. PRIEST

term Jp/00 remains dominant in the f-component of the equation of motion (8.75), so that p is
still just a function of R alone to lowest order. Second, since the flow defined by (3.130) is
irrotational, the dominant inertia term —g%g in (3.74) is zero in its own right. It is therefore
concluded that a magnetostatic balance is still achieved in which

JLf =—p' +ad, (3.29)

where the term aa’ comes directly from the last term in (3.74). The right hand side of (3.29)
is zero, however, by (3.24), (3.28) and P = p. Itis concluded, therefore, that fin the improved
approximation is given by F=—asin0+], (3.30)

where by (3.6) f satisfies the equation,

o
g%+f= 24’ sin 0. (3.31)

The most general solution satisfying the boundary condition 9f/00 = 0 at 0 = in is
J=—a(0—1}n) cos 6 —asin 6, (3.32)

where 4 is, as yet, an undetermined function of R.

(f) Matching of inner and outer solutions
As 6 0, f has the asymptotic form
[~ —(a+a) 0+%ina (3.33)
and matching with the corresponding inner solution, part of which is given by (3.228), is
achieved provided ind = 200 = 2a. (3.34)
A solution of this equation is a = ,/(8R/[x), (3.35)

while the general solution contains an arbitrary constant which may be added to R. The
constant may be absorbed, however, by R, in the definition (3.3) of R! Finally we normalize
the magnetic field b so that (a =) |b| = M;%, when r = M; (~ [/L) (see (2.2) and (2.13)).
The condition implies that

Ry = n/SMi—In M, (or In (Z/LM) = —n/SM,). (3.36)

(g) Summary

To the order of accuracy attempted in this section the solution in the inflow region I is

¢ = J (%e) cos 0*%3 J (%) (0— 1) sin 0, (3.372)

f= A/(%?) sin 0—A/(%) (60 —1n) cos 6, (3.875)
4R

[) = 7, (3.376)

where only the leading order coefficients of the trigonometric functions sin # and cos 6 have
been retained (see (6.3) below). Here the dominant terms are determined by (3.13), (3.28) and
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(3.85) ; the correction to f is given by (3.32) and the correction to g is readily derived from
(3.8). Referred to rectangular cartesian coordinates x and y, the fluid velocity and magnetic
field components are

4 = (&) M¥(n—0), u, =—M}, (3.384)
by =—M=% b, =—IM¥}n-0), (3.38b)
where M = u,lb, = n/8R (3.38¢)

is the inflow Alfvén number which decreases with distance from the neutral point, O. The
magnetic field is almost uniform and antiparallel to the x-axis, increasing in strength with
distance from O. Since b,, is negative, the magnetic field lines are bowed inwards slightly to-
wards the neutral point. By contrast the flow is again almost uniform but antiparallel to the
y-axis, decreasing in strength with distance from O. The streamlines are, therefore, bowed as
indicated in figure 1. The magnetic field is current-free (consequently force-free) and the flow
is irrotational (but see § 6 below).

The inflow is separated from the outflow region II by the Alfvén line OA located approxi-

mately at y=6x (0=M). (3.39)

Evidently this line is not straight but bends slightly with distance from O. In the outflow region
IT the total pressure is still P = 1M, (3.40)

as given by (8.37¢), while u, and b, are given by (5.13) below. The values of u, and b, neces-
sary to complete our picture are also given by (5.13) but are not determined by the results of
this section. According to (5.13) the ratio u,/u, is very small of order M 2implying that the stream-
lines are almost parallel to the x-axis, while b,/b, is positive and of order 1 implying that the
magnetic field lines are bowed towards the neutral point as indicated in figure 1.

It is to be expected that our asymptotic solution is valid when

M<1 (orR> 1), (3.41)

i.e. at distances from the origin large compared with the distance . at which inertia and
Lorentz forces in the inflow region are comparable. It transpires, however (see §§ 5—7 below)
hat there is a further region containing the Alfvén line OA (see figure 2), in which our approxi-
mations fail. Except for these regions, where the solution is undetermined, the model constructed
in this section is almost unique. That is to say different values of Z lead to different solutions,
but they are not independent. In fact, the whole family of solutions can be generated from a
single solution just by a change of length scales (i.e. a similarity transformation). The uniqueness
of our similarity solution, which stems from the analyticity condition at the first Alfvén line
OB, should be contrasted with the wide range of similarity solutions proposed by Yeh & Axford
(1970).
(k) Petschek’s solution

Consider a region of finite size L, large compared to.#. At distances from the neutral point

of this order R takes the constant value

R, =In (L %), (3.424)
and the inflow Alfvén number M, is given by

R, = n/SM, = n/SM;+1n (L /M.L). (3.425)
49-2
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On the length scale L, therefore, the Alfvén line OA is straight, while the magnetic field and
flow in the inflow region I are to leading order uniform and of strengths
B, = (Mi|Mp)* Bi and U, = (M,/M))} U, (3.43)
respectively.
Petschek (1964) developed a similar solution as a power series in M; on the basis that

M <1, (3.44)

in direct contrast to our similarity solution valid at large R. Since he took no account of Alfvén
line curvature, Petschek was obliged to terminate his Alfvén lines at a finite distance L in
order for his expansion procedures to be consistent. In our model Alfvén line curvature between
the central diffusion region and the distance L, can be neglected provided (M;—MM,)/M; is
small. This estimate puts a bound on L, which by (3.425) is

In (L,/L) < m/SM,. (3.45)

At distances small compared with L, our solution coincides with Petschek’s and moreover the
results (3.38)—(3.40) compare favourably with the refinements due to Vasyliunas (1973,
equations (89), (30) and (44) respectively). Indeed as a result of these higher order approxima-
tions, Vasyliunas noticed the key similarity property of Petschek’s solution which is funda-
mental to our similarity solution. In particular he noted that on any intermediate length scale
lying between L and L,, Petschek’s solution could be formulated without explicit reference to
either of the characteristic lengths L or L.

An inequality similar to (3.45) was derived by Petschek for the validity of his solution. In
particular, he suggested that the solution would be valid until equality of the left hand side of
(3.45) with n/4M; (see Petschek 1964, eqn. (30)) is achieved. The equality gives an estimate
of the maximum possible value of the reconnection rate M, (here almost the same as M;), which
provides a dimensionless measure of the approach velocity of merging magnetic field lines in
a region of size L,. By contrast, our solution is appropriate to an unbounded region and is in
no way restricted by (3.45). Indeed rather than encountering difficulties at large distances
the accuracy of the similarity solution not surprisingly improves, as 7* — co. Nevertheless,
since M decreases with distance from the neutral point, M, is bounded above by M;. More-
over, as we see in §§ 8 and 9 below when the diffusion regions are investigated in detail the
solutions can only be justified rigorously in Petschek’s limit (3.44) of small M. In this case
R is large everywhere outside the central diffusion region (see (3.38¢)) and takes the value
R, (see (3.420)) at distance L, from the neutral point. Here the solution (3.38) to (3.40) is
valid except in the immediate vicinity of the Alfvén line OA. Further comparisons with
Petschek’s solution are made in § 10.

4, COMPLEX POTENTIALS FOR REGION I

In the previous section a first approximation to the flow and magnetic field far from the
origin was obtained of extremely simple form (see § 3 (g)). There are, however, still some
important details to be resolved. First, it is known that there are large concentrations of vorticity
and electric current at the Alfvén line OA but how is it distributed elsewhere? Secondly, and
related to the previous question, there is a non-uniform feature of the approximate solution in
the vicinity of OA which is not apparent from the lowest order solution. To answer the question
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and to resolve difficulties arising from the non-uniformities it is necessary to develop the
approximate solutions to higher orders. In accomplishing this objective we gain confidence in
the validity of the approximate solution described in § 3 (g) and a deeper understanding of
the physical processes involved.

In the previous section a formal deductive approach was adopted in deriving the solution.
The procedure not only demonstrated convincingly uniqueness of the solution for given M, but
also emphasized the logical order in which the solution is developed. To some extent the formal
approach is now abandoned and advantage is taken of the preliminary calculations of § 3 which
indicate that the flow and magnetic field in region I are free of vorticity and electric current to
a high order (see (3.37)). Consequently, the solution is decomposed into two parts; one po-
tential, the other rotational, distinguished by the superscripts P and R respectively. The stream
function ¥, magnetic potential y and total pressure p are written as

Y =yr+yR, x = XUHXR, po=pt PR, (4.1)
where V3P = VayP = 0. (4.2)

The potential part of the solution by itself automatically satisfies the equation of motion and
gives rise to the total pressure

PP = L(bP2—uP?) = L(VyP)2—§(VyP)2 (4.3)

There is, however, no reason to suppose that the frozen field equation can be satisfied by purely
potential flows and magnetic fields. The resulting failure of the frozen field equation is measured

by
¢ = 1+ (uP x bP),. (4.4)

The main objective of this section is to show how ¥¥ and x¥ can be constructed to satisfy the

boundary conditions
YP = 0x"00 =0 (0 = §n), (4.5a)

yr = x" =r"(R) (0 = O(R)), (4.50)

where AP (R) is, as yet, an undetermined function, at the same time ensuring that ¢ is small by
comparison with unity.

The problem posed above by (4.2), (4.4) and (4.5) is ideally suited to complex variable
methods. Corresponding to the functional forms (3.2) we introduce

¥ = Re{zw(Z)}, x¥ = Im{—z0(Z)} (4.6a)
so that the velocity and magnetic field have the complex representations
e 0(uf —iup) = i(w+dw/dZ), e (b)Y —ib}) = — (v+dv/dZ), (4.60)
where Re and Im denote the real and imaginary parts respectively,
z = x+iy = re’, (4.6¢)
Z = Ry+1n (z[i) = R+i(0—4n). (4.6d)

Accordingly (4.4) may be expressed compactly in the form

¢ = 1—Re{(w+dw/dZ) (0 +dv]dZ)}, (4.7)
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where the bar denotes complex conjugate. Moreover, the symmetry conditions (4.54) and
further use of (4.6) yield the equations

Im {w(R)} = Im {o(R) + (dv/dR) (R)} = 0, (4.84)

implying that w and v are real functions.t The specification of the problem for w and v is com-
pleted by application of the boundary condition (4.56) at the Alfvén line OA. From the defini-
tion(4.6) this means that the additional conditions

Re {ci® w[R+i(0—}n)]} = Im {—e®o[R+i(0@— )]} = hP(R) (4.9)

must be imposed on w and v. Henceforth, when unspecified, it will be understood that the
functions w and v are being evaluated at Z = R. Moreover a prime will be used to signify
differentiation with respect to R; for example, ¢’ is the real function

v = [dv/dZ];_g- (4.85)

So far no approximations have been made. However, since it is only the far field solution,
R > 1, which is under consideration we now utilize the property that the ratio (6 —4n)/R is
small. Consequently, w(Z) (and similarly v(Z)) is represented approximately by the Taylor

series
w(Z) = w+i(0—fm)w —3(0—in)?w" — (0 —n)3w" +.... (4.10)

If it is supposed that the real functions w and v satisfy the equation

1 = Re [(w+dw/dZ) (v+dv/dZ)];_p_yin (4.11a)
= (w+w) (v+v) —3(3Fn)? (wv—2w0 +uwv”) +..., (4.110)
then ¢, defined by (4.7), is

€ =

ROj-

[(0—1m)2— (3m)2] ("o — 20y’ +uwn”) + ... (4.12)

By (4.10) the product wv is order 1 and, since differentiations with respect to R effectively
reduce the order by a factor R, it is clear from (4.12) that

¢ = O(R?) when 0 = O(1). (4.13)

Moreover, since @ is order R~ (see (3.38) and (3.39)), the magnitude of € in the vicinity of the
Alfvén lines where 6 = 0(0) is even smaller;

¢ = O(R3) when 6 = O(R™). (4.14)

Consequently, on satisfying (4.11), the frozen field equation is satisfied throughout region I
to a high order of accuracy. The increased accuracy for small 6 transpires to be especially
useful in tackling the analyticity requirement on the full solution (4.1) at the Alfvén line OB.

In the remainder of this section we proceed to use (4.114) and a Taylor series approximation
to (4.9) to determine w, v and @ in terms of AF. Now it is known from results of the previous
section, namely (3.22a), (3.38) and (3.39), that the first approximations to #F(R) and ®(R) are

IP(R) = J(n/8R), O(R) = =/SR. (4.15)
t This is not strictly correct. In fact, part of v may be complex and proportional to e ®. Such a term would

lead, however, in the definition (4.62) of X to an irrelevant arbitrary constant which for convenience is chosen to
be zero.
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Consequently the expansion of (4.9) analogous to (4.1150) is
w+O0(RE) =—v0—(0—Lin)v' +0(R%) = IP(R). (4.16)

The error estimates follow directly from the expansion (4.10) and the orders of magnitude of
k¥ and O given by (4.15). The approximate representation (4.16) can be extended to include
higher order terms without difficulty. Only the terms given explicitly in (4.16), however, are
required in the subsequent analysis.

Once w and v are known the total pressure

PP(R, 0) = ¥{|v+dv/dZ|2— |w + dw/dZ|%} (4.17)

(see (4.3)) is readily calculated. By (4.16) v is evidently of order R¥ and w is of order R so
that the magnetic contribution to the pressure p* is larger than the kinetic contribution by a
factor order R% A Taylor series expansion of (4.17) at the Alfvén line OA indicates that

(R, 0) = §(v+v)2+O0(R). (4.18)

To make further progress it is anticipated that, for large R, A (R) can be represented by

R KP(R) = h§ +R(A} In R+ ) + O[R~2(In R)?]. (4.194)

The corresponding forms for w, v, ® and p¥(R, O) are
Rtw(R) = wy+R(wy In R+w,) +O[R2(In R)?], (4.190)
R v(R) = +R(v;; In R+v,) +O[R~2%(In R)?], (4.19¢)
O(R) = Oy+R (O In R+06,) + O[R2*(In R)?], (4.194)
R2pP(R, 0) = R1pY +O[R2(In R)]. (4.19¢)

Substitution of (4.19) into (4.114) and (4.16) yields

1 = wyvg+ R (w309 + wovy1) In R+ (wyvy+wyvy)} + O[R~2(In R)?], (4.204)

wo +RYwy, In R+w,}+ O[R~2%(In R)?%]
= —9 (0 — {m) — R[04, (Op + 17) +0901] In R +21 (0 + }m)
+9(0y +36,) — 31y} + O[R-*(In R)?]
= BB+ R{¥, In R+ AP} + O[R2(In R)?] (4.205)

respectively.
The zero order coefficients together with (4.15) agree with the results of § 3 and give

wy =k = \J(n[8), vy = J(8[r), O = m/8. (4.21)
Equating the coefficients of R~ In R yields, with the aid of (4.21), the results
wy = kY, vy =—(8/n) Yy, O = J(3n) AL, (4.224)
for wy,, v4 and @y, in terms of Af;; while the coefficients of R~ yield
wy = h{, v = —(8/n) AT, O, = —(n/16)+(3n) (AY —2hT). (4.220)
The corresponding value of pF, is, by (4.18),

P = b = 4. (4.23)
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It will transpire later that the potential solution (4.19) is an accurate representation of the
complete solution in region I including the rotational part up to order R~2 This includes the
terms order R~%(In R)? and R~%(In R) in (4.19) which have not been considered explicitly!
Consequently it is possible in the next section to consider region II to the same order and
hence determine the unknown coefficients defining AP(R). Though all results to this order
could have been obtained easily without recourse to complex variable procedures some
advantages are gained. In particular, the representation is compact and the method of con-
tinuation of the expansion procedures to higher orders is transparent. These remarks are
particularly pertinent to (4.12) which gives the amount by which the potential solution fails
to satisfy the frozen equation, namely

e = 3[(0—3n)*— (3n)2] R+ O(R>1n R). (4.24)

5. THE SOLUTION FOR REGION II

The boundary layer solution (3.224) in region II is here extended to the next order and
matched across the Alfvén line OA with the potential solution of § 4. The distinctive character
of the solution in region II stems from the pressure distribution. In region I the total pressure
adjusts itself in a manner which allows the fluid flow a smooth passage up to the Alfvén line OA.
Since the total pressure is continuous everywhere, its value in the boundary layer is effectively
applied at the Alfvén line OA. In the zero order approximation of § 3 the total pressure
gradient is negligible. In the higher order approximation considered in this section, however,
the flow and magnetic field display new features which result directly from this pressure
gradient.

It is natural to extend the solutions for /' and G in ascending powers of R~1. This simple
procedure proves inadequate because of a degeneracy which becomes apparent later in the
section (see (5.8) below). As already anticipated in § 4 In R terms must be introduced and hence
a solution of the boundary layer equations (3.17), (3.18) is sought of the form

G(R, &) = R3Gy (&) + RHGy (&) In R+Gy(€)} +O[R~¥(In R)?], (6.1a)
F(R, &) = RF(£) + R-¥Fy(£) In R+ Fy(8)} + O[R¥(In R)?], (5.1b)
P(R,£) = RP, +0[In R]. (5.1¢)

From (3.22a), the zero order solution is
G, = O}, F, = 0}, (5.20)
where from (4.21), 0, = in. (5.25)

The terms of order R~21In R and R—2% in (3.174), (3.18) yield the four equations

£ d2G,,/dE2 — d2F,, g = o, (5.34)
£ d2G,/dg2 — d2F,[dE2 = (3 + P6,)64, (5.30)

£ dF, |dE — Fy; —dGy,[dE = —0,,/68, (5.4q)
£ dF,[/dE — F, —dG,/dE = — (0, +16,) /6. (5.45)
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They comprise two pairs of coupled equations subject to the three boundary conditions
G =dFj/d§ = 0at§ = 0and F == G at £ = 1 and have the unique solutions

Gy = %(@11/9%) & Fu = %(@11/@%% (6.54q)

Gy = [(16:+16,)/68) £~ (3 +P,6,) 6} g@),} (5.50)
Fy = [(36,+16,)/63] - (3 + P, 6,) 65 # (§), '
where Ltk fit Pt ¢
o6 == (149) 1 (59 + (559 m (159) s
(5.5¢)

70 (291 (5 (59 ()

In particular, the value of G and F on the Alfvén line OA is
G(R, 1) = F(R, 1), (5.6)
= R0} + R-H}(0,,/0}) In R+4(6; — P163)/6}] + O[RF(In R)].

To the order of accuracy considered here, g and fin region I take the same value AF(R) on
the Alfvén line OA. It follows from (5.6) and (4.194) that there is a second relation between
hP(R) and O(R) in addition to that given by (4.21) and (4.22), namely

=6} i = 3(6u/6)), (574, 0)
1 = $(6,—P.63)/6}. (8.7¢)
The matching involved in (5.7a) has, of course, already been achieved in § 3. After substitution

of (5.7¢) into (4.22b), O, cancels out. Consequently @, can take any value (which we write
in (5.11) below as 4n(} —«) provided

hy = —(n/8) (§+Pyn/8). (5.8)

Otherwise there is no solution of the algebraic equations! Since continuity of total pressure
across the Alfvén line OA implies that

PJ = [7{’ = 4/”) (5.9)

the right hand side of (5.8) is non-zero. Thus without the In R terms in the series expansions

(4.19) and (5.1), the condition (5.8) cannot be met. The reason that the simple In R does not

introduce further complications can be seen from (5.75) where again degeneracy occurs. This

time though, it is trivial in as much as (5.76) and the last equation (4.224) are identical.
From (5.8), (5.9) and (4.224) we obtain

wy = hy =—1/(n/8), vy = 1J(8/n), Oy = —§(n/8). (5.10)
The corresponding results (4.225) become on using (5.8) and (5.9)
wy =k = —ja(n[8), v =}ay(8/n), O, = (}—a) (n/8), (5.11)

where the value of the constant « is arbitrary. The introduction of the arbitrary constant is
no surprise and was anticipated earlier in § 3 by the constant of integration in (3.35). As before
the constant « may be absorbed by the constant R, in the definition (3.3) of R. The degeneracy
encountered above is thus accounted for and no further degeneracy of this type can occur in
the expansion procedure.

50 Vol. 284. A.


http://rsta.royalsocietypublishing.org/

A

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

FA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

394 A. M. SOWARD AND E.R. PRIEST

The results of this section may be summarized by substituting (5.2), (5.9), (5.10) and (5.11)
into (5.5). It gives

G = J(n/SR) {E+ R~ 4 In R+ }(1—a) E- 9 ()] + O[R(In R)?},  (5.124)
F = J(r/8R) {1 +R[—}1n R+}(1—a) —F (£)]+O[R2(In R)?}, (5.12)
P = 4R/n+0(In R). (5.120)

The x and y components of the fluid velocity and magnetic field in the outflow region II can
be calculated from (5.12) and expressed in a form similar to (3.38). They are

4 = MALOMIIn M), w, =2 M3 [ln (i—f—g) -g] +O(MEIn M),  (5.134)
4 1+§ "
by =~ Mtln (Tjg) +OMYIn M), b, = —ME+O(MIn M),  (5.13b)

where M is defined by (3.38¢). Owing to the singularity at § = 1, the solutions (5.13) cease to
be valid when In |1 —£| is of order In A4. This non-uniformity of the asymptotic expansion is
discussed in detail in § 7.

6. THE ROTATIONAL SOLUTION FOR REGION I

One attraction of the decomposition in § 4 of the solution into potential and rotational parts
is that the expansion of the potential part is uniformly valid throughout region I. This is not the
case for the rotational part which requires an inner expansion valid when 6 is order R and
an outer expansion valid when 6 is order 1. This happy state of affairs transpires to be especially
useful since the potential part dominates the full solution. A word of caution is called for,
however, as the decomposition into potential and rotational parts is not unique. Indeed the
dominant term defining the so called rotational part of the magnetic field is potential! The
reason for the anomaly stems from the boundary condition (4.55). Here the requirement that
¥* and ¥* must be equal is ad hoc, since any differences in their values may be accommodated
by the rotational part of the solution. As a result a potential part of ¥ is generated at a lower
level than is strictly necessary. The criterion adopted to specify the rotational part of the
solution is that it should stem directly from the vorticity and electric current and satisfy
boundary conditions similar to (4.5).

The main objective of this section is so determine the dominant part of the vorticity and
electric current in region I. At the same time we have the added bonus of understanding how
the series approximation may be systematically extended to higher orders.

The first step towards our goal is to represent the potential solution of § 4 explicitly in terms
of the outer variables R, 6 and the inner variables R, £. The outer and inner solutions are then
represented in the form

g =gP+gR’ f=fP+fR> b =pP+pR’ (6.1(1, b, L‘)

G =GP+G®, F=FP+FR® P =PP4+PR (6.2a, b, ¢c)
According to (4.6), (4.19), (4.21), (5.10) and (5.11), g¥ and f* have the outer expansions
J(8/m) g¥ = R~* cos O +R3#—1In R cos 6 — }a cos 6 + (6 — §n) sin 0} + O[R-%(In R)?], (6.34)

N (n/8) fF = —R¥sin 0~ R} In Rsin 0+ Josin 0+ }(0— §n) cos 0} + O[R-E(In R)?].  (6.35)
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Although the potential solution (4.19) only gives terms in the outer expansion of f¥ to order
R-%(In R)2, it is in fact sufficiently accurate to give terms in the inner solution up to order
R-%(In R)2. The reason for this is simple, since the expansion of f¥ when @ is order R~ is given
by the middle term of (4.16) with @ replaced by 6, namely

fP =—{(0—1%n) v +6v}+O(R?). (6.4a)

Here the terms are given correct to order R~% (In R)2 by (4.19). The corresponding expression

for g7 is just & = w+O(R), (6.45)

which is independent of 0. The inner expansions defining G¥ and F* are deduced by putting
0 = O(R) £ in (6.4) and using the expression (4.19) for @, » and w. They are

J(8/m) GP = Rt —R-¥}1In R+ }a}+ O[R-E(In R)?], (6.5q)

J(8/m) FP = R¥(2—£) —R31In R(2—§) + (a—1) + (1 —}a) £+ O[R~%(In R)?]. (6.5b)

The failure of the potential solution is first apparent when ¢ is non-zero. Since this occurs
when ¢ is order R~2 it is reasonable to suppose that the rotational solution is smaller than the
potential solution by the same order of magnitude. An outer solution is therefore sought
taking the form

g% = Rt g}(0) + O[R~¥In R], (6.6a)
SR = R} fR(6) + R¥ {In Rf£(0) +/(0)} + O[R~% (In R)?], (6.60)
together with an inner solution taking the form
G® = R-IGR(£) + R~Hln RGR(£) + GR(E)} + O[R~%(In R)?], (6.7a)
FR = R-FR(E) + R-¥In RFE(E) + FR(€)}+ O[R~%(In R)?]. (6.70)

To the order of accuracy indicated in (6.6) and (6.7) all nonlinearities involving the rotational
part of the solution alone can be neglected in the governing equations (3.7), (3.8), (3.17) and
(3.18). All nonlinearities involving the potential part of the solution alone can also be ignored
provided 1 and @ on the right hand side of (3.8) and (3.18) are replaced by ¢ and ®e respect-
ively (see § 4). The only remaining terms to be considered are the direct nonlinear couplings
between the potential and rotational terms.

As pointed out in § 3, the key for determining the rotational part of the solution uniquely
lies in the analyticity condition on the inner solution at £ = 3. For this reason the development
of the solution is begun in the inner region. From (6.2¢) and (3.175) it is clear that

OPR[OE = O(GPGR/R) = O(R™) (6.8)
and consequently to the order of approximation considered,
P? = constant+ R-YP{ In R+ PE} + O[R2(In R)?], (6.9)

where PR and P} are independent of §. To obtain the order of accuracy required by (6.7),
equation (3.17a) may be approximated by

pOGR 0 3G, (1/6) 3G™eE)

Gt & ©)
26PR 02F R O(FP, (1/0) 0FR[0g) O(FR, (1/@) OFF[0§) 5
= ot o [y ey O (6.10)

50-2


http://rsta.royalsocietypublishing.org/

Vi
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

396 A. M. SOWARD AND E.R.PRIEST

Here it has been noted from (6.5) that
0GP[0f = O[R%(In R)?], O2FP[0£2 = O[R-%(ln R)?]. (6.11)
Similar approximations are made to (8.18), which utilize (4.4), giving

oFR OFF OG® Q(GR, FP) 0o(GF, F®
~0r T O R R g - OO, (0129

where by (4.24) € = —R*nOL+O0(R*1n R). (6.125)

Note that according to (4.10) and (4.11), the O(R~3In R) error term in (4.24) reduces by a
factor R~ in the inner region. The only boundary conditions imposed on the solution are that
GR(R, £) and FR(R, £) match with the outer solution, as £ o0, and that

GR(R, 1) = FR(R, 1) = hR(R), (6.134)
where AR(R) is as yet an undetermined function whose first few terms are of the form
RR(R) = R-IAE + R-3¥Afi In R+ 4} + O[R~%(In R)?]. (6.13b)

We now proceed to substitute the expansion (6.7) for G® and F® into (6.10) and (6.12).
Correct to order R they yield

d2GR/dE2 — (2 £) d2FR/dg2 = o, (6.144)
— dFR/dE +GR + (2 —£) dGR/E = 0. (6.145)

Matching with the outer solution imposes the condition that G is finite, as §—> oo (see (6.64)
and (6.23a), (6.37) below). The only solution of (6.14) which satisfies this condition together

with (6.13) is GR = IE, FPR = IFL. (6.15)
Equations similar to (6.14) are obtained by considering the terms of order R~*1In R in (6.10)
and (6.12). They are  gaqmiqes_ (9 _g) d2FR/dE? = — (n/8)} PR, (6.164)

—dFg/dE+ G+ (2—§) dGE/dE = 0. (6.16)

The additional pressure term in (6.164) is dismissed by the condition of analyticity on the solu-
tion at £ = 3. There is no boundedness condition on Gf, as £+ o0, so that the general solution
satisfying the boundary condition (6.13) is

Pl% = 0, Gl% = }l11::{3+A]3(g—1)’ Fl% = h1R3g+A13(£—'1)7 (6'17)

where the constant 4,5 is, as yet, undetermined.
The above procedure is repeated. This time the terms order R~ in (6.10) and (6.12) are

retained giving dGR/AE — (2 £) d*FFYAE? = — (n[8)} P — A, (6.180)
—dFR/AE + GR + (2—£) dGR/AE = — 4(n/8) £+ AR, (6.185)
Elimination of FR from (6.18) yields
{1—(2-£)%) PGR/E2 = — (n/8)} PR~ +4(n/8)] (2 ). (6.19)
The solution is analytic at § = 3 provided
PR = —(n/8)~% A} —in. (6.20
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For this value of P{ the general solution of (6.18) satisfying the boundary condition (6.13) is

GR = 4(n/8)} (E—1) [In (E— 1) — §] + (BhF + Ag) (E—1) + A5, (6.21a)
FR = 4(n[8)t (E—1) [In (E—1) — 5]+ (4,— J4) (E—1) +AFE, (6.215)

where 4, is, as yet, an undetermined constant.
To achieve matching G® and F® must be expanded on the basis of £ large. From (6.7),
(6.15), (6.17) and (6.21) we obtain

G = Rhg + R7¥{Ays In R+ 4(n[8)F §(In £~ §) + (345 + 4;) £}

+O[R-%In R] + O[R~¥ In R], (6.224)
FB = RIGZE+ R¥{(Mi+ 45) EIn R+4(n/8)Y E(In £—§) + (4y — 345 +AF) &}
+O[R~%In R] +O[R* In R]. (6.22b)

In terms of the outer variables this provides the two conditions

g% > R-¥{(8/n) [413+4(n/8)%] 0 1In R+ A + (8/n) [4(n/8)% (In 6 +1n (8/n) — 3) + LhR + A4,] 6}
+O[R%1n R], (6.234)

FR s R-¥(8/n) hFO+R-E {(8/n) [hE +Agz +4(n/8)¥] 6In R
+(8/m) [4(n/8)t (In O +1n (8r) —}) + Ay — AR + hE] 6} + O[R—E In R], (6.23b)

on the outer solution, as & — 0. In view of the assumed form of g® in (6.64) the condition of
the boundedness on G§', as § - o, is clearly correct. If the condition was not applied a term
which behaves like R-%0 would appear in (6.234a). Moreover, in order that no terms order
R~%1n R should appear in (6.64), it is necessary that

4dy3 = —4(n/8)%, (6.24)

a condition which eliminates the leading term in (6.234). No further information is gained
without determining the solution (6.6) to the outer problem in detail.
To the order of accuracy required by (6.65), equation (3.7) may be approximated by

0 = _%P%R_fp‘@f}t —_ a(f;)(’]g{;)/ae) _a(fg(’]gf;’)/ag) +O0(R3), (6.25a)
0= ——a—gg+0(R_2). (6.250)

According to (6.255), p® is independent of & to the order required by (6.254) and is given by
the inner solution (6.9) and (6.20). It is

p® = const —{(n/8)~% hf + {n} R-1+ O[R~21n R]. (6.26)

Since the largest term in (6.254) is fPZf R, the magnetic field is current-free to lowest order.
Hence the first two coefficients in the expansions (6.64) for f® which take account of the
boundary condition (6.235) are

S& = (8/r) hftsin 6, (6.27)

S = (8]n) W sin 6, (6.28)
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where reduction to the latter result is achieved by (6.24). The value of £ is now determined by
equating the terms order R~2 in (6.25) which yield the equation

0 = —In+4/(8/r) sin 0{d?/F/dO? + f* — (24/n) k¥ sin 6}. (6.29)
The general solution satisfying the symmetry condition (9f/00 = 0) at § = in is
f& = —4(n/8)} {(0—in) cos @ —sin O In (sin 6)}

— (12/z) hE (0 —%m) cos 6 + Dy sin 0, (6.30)
where Dy is, as yet, an undetermined constant. A match with (6.235) is achieved, as 6 — 0,
provided
kit = —$(n/8)% (6.31a)
and Dy = 4(x/8)* [In (8/n) — 41+ (8/m) (dy+A). (6.315)
From (6.65), (6.30) and (3.6) the electric current in the outer region is given to a first approxi-
mation by .
4(m/8) [ -0 | ]
= — = ) . 6. 2
7R sin ¢ ¢ In—6*:" (6:32)

With the singularity located at f = ©, (6.32) is also valid in the inner region as can be seen
from (6.75) and (6.215). Consequently (6.32) is a uniformly valid approximation throughout
region I. In the same notation the electric current in region II determined from (5.5) is to
lowest order (/)3

. /8

i = R (6.33)
Evidently, the electric current density in region II is larger than that in region I by a factor of
order R? for the inner region (#/@ = O(1)) and by a factor of order R? for the outer region
(0 = 0(1)).

Finally the frozen field equation (3.8) is considered to determine git. It may be written with

the aid of (4.4) as

— g™ V[00) — g7 (A [00) +17 (0" [20) +/ (087 [00) = e+ O(R™). (6.34)
With the aid of (6.3), (6.6), (6.27) and (4.24) this reduces to lowest order to
A (8/m) {—sin 0 dgft/d0 + cos 0 git — Y} = H(0— §n)2— (§n)2}. (6.35)

The only solution satisfying the symmetry condition (¢ = 0) at @ = §=n is
g — L(n/8)} {[(a_ 4m)?— (31)?] cos 01— 2(6— bx) sin @ In (sin 0)
—25in0 f:" In (sin 6') da'} — 8(r/8)¥ cos 0. (6.36)
Matching with (6.234) is achieved provided
As = (n/8)% {J§Q~4 In (8/n) — (8/r) fjﬁ In (sin 0") d&’}. (6.37)

At this stage the only independent undetermined constants are A{y and 4§ and these are not
fixed until higher order terms are considered.
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Differentiation of (6.35) gives,

d2dt o m\ 0—4in
dor T& = ‘A/(§) no (6.38)
Hence as in the case of the electric current a first approximation to the vorticity throughout
region I is 31
w = T8 0—im) (6.39)
rR% sin ¢
Similarly the vorticity in region IT derived from (5.5) is to lowest order
=
(r/8)7 6 (6.40)

© T RN 62—y

The main objective of the section is now achieved. In particular, the electric current and
vorticity are known everywhere. Moreover the réle of analyticity at the first Alfvén line OB
and the process of iterating the approximate solution to higher orders are made clear. For
example to improve the present results by order R, it is necessary to derive the order R—%
terms in (5.1). In the process G(R, 1) defined by (5.6) is determined to the same order. The
potential solution of § 4 can then be calculated to the higher order by application of the
K (R) = G(R, 1) —h®(R) (6.41)

boundary condition

at the Alfvén line OA. The value of A®(R) is known to the required order of accuracy through
the analysis of this section which determined Af. This closes the problem for the flow in region IT
and the potential part of the solution in region I at the new order. At this stage the analysis of
this section can be improved by order R-'. The cycle outlined above can be continued in-
definitely giving an asymptotic solution to any order required.

7. THE ALFVEN LAYER

The solutions for the magnetic field and fluid velocity developed in §§ 5 and 6 are not
uniformly valid asymptotic expansions as § - 1. In particular the presence of terms proportional
to |1 —£|In |1 —£]| in the expressions for I and G in (5.5) and (6.21) leads to field strengths
and flow speeds which tend to infinity as £ - 1. Inspection of the order of magnitude of the
terms in the series expansions (e.g. compare 0Gy/0§ with 0G,[0f defined by (5.2) and (5.5))
indicates that the breakdown occurs when

—In [1—£| = O(In R). (7.1)

The small region adjacent to the Alfvén line OA in which this order of magnitude relation
holds will be called the Alfvén layer.

Perhaps the most straightforward procedure for determining the solution in the Alfvén layer
is to introduce the characteristic velocities

and consider the governing equations in characteristic form. The equation of motion and
frozen field equation combine to yield the pair of coupled equations

(v_-V)v, =—Vp, (7.3a)
$o_xw,), =—1. (7.30)
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The formal solution of (7.34) is
Y
0.(®) = v,(w) l—,—,i, ds, (7.4)

where the integration is along a C_ characteristic defined by

Y_(x) = ¥_(%,) = constant (7.5a)

and s measures distance along the characteristic. Here
V=Y xx (7.50)
is the stream function for a flow which has velocity v, and ¥_ = 0 defines the Alfvén line OA.

In both regions I and II the analyses of the previous sections have assumed continuity of both
¥ and y at the Alfvén line OA. The value taken by both ¥ and y on the line as given by (6.41) is

th(R) = r[FP(R) +hR(R)] = rG(r, 1). (7.6)

The assumption of continuity implies that the component of ©, normal to OA takes the same
value on either side of the Alfvén layer. Itis therefore reasonable to suppose that this component
of v, is almost constant across the layer and takes the value

2h (7.7)

to lowest order. Since by hypothesis v_ is almost parallel to OA in the Alfvén layer, equation
(7.3b) combined with the result (7.7) indicates that o_ is also almost constant across the layer

and takes the value lo_| = 1/h (7.8)

to lowest order. Again the total pressure p is assumed almost constant and so it follows that the
only quantity which undergoes substantial variations across the layer is the component of v,
parallel to OA.

Within the framework of the above approximations the radial component of v, can be
computed directly from (7.4). Throughout the Alfvén layer the pressure given by (5.1¢) and
(5.9) is

p = 4R[n+O0(In R), (7.9)
while £ is calculated from (5.1a¢) and (5.2) is
h = J(n/8R) +O(R%InR). (7.10)

The corresponding value of y_ calculated directly from (7.8) and (7.10) is
Y = —r{J(x/SR)(1—§) + O(R-FIn R)}, (7.11)

in agreement with the values determined from both (5.1) and (6.5) which are appropriate to the
edge of the Alfvén layer. Since the C_ characteristics are almost radial lines, the element of
length dsin (7.4) may be replaced by the element of radial distance dr and the magnitude of the
component of v, parallel to OA is given approximately by v,,. With the aid of (7.9) and (7.10)
the integration of (7.4) in the lowest order approximation is straightforward and yields

v = — A(8R[1) +2S(¢-) + O(R*1n R), (7.12)

where §'is as yet an arbitrary function. Here the first term is forced by the pressure gradient and
the second term is the constant of integration which takes different values on different C_
characteristics.
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The inner expansions constructed in §§5 and 6 can now be utilized to determine the function
S. Since equations (5.2), (5.5), (5.10) and (6.6) yield

_ 1 (0F 3G
=5 (et o)
_ {«/(8R/n) {1+R[fln R+In (1 -]+ O0(RY)} (£ < 1), (7.13)
| = J(8R/x) {t +1R1In R+ O(R)} (€ > 1), '
matching is achieved when § is given by
8R(|y_[)
S.) = A/( m ) W= <0, (7.14)

0 Y- > 0),

where R(|y_|) is the usual function R defined by (3.3) with the argument r replaced by |y_|.
Here terms order R~% In R and smaller have been neglected. Now when —In |1 —£| is of order
In R,

A/ (g,?) {t+%4In (1 -£) +O(R'InR)} in region II,

S = (7.15)

0 in region I

and a clear match with (7.13) is obtained when —In|1—£| is large compared with In R.
Obviously higher order terms must be considered to obtain matching at the order R—%In R.
level when —In (1—§) is of order In R.

It is evident from (7.13) that the singularity at £ = 1 is still not removed. In fact on non-
dissipative theory it cannot and reflects an inadequacy of our solution! The source of difficulty
can be traced via the solution (7.4). In particular, suppose that x, lies on the x or y axis. Then
the integration can only be performed if Vp and v_ are known everywhere along the C_ charac-
teristic passing through x,. This will only be the case if R(|x,|) is large. It follows that the
solution (7.14) is invalid in the immediate vicinity of the Alfvén line OA but becomes valid at
distances at which

R(ly_]) > 1. (7.16)
The two characteristic curves for which R(]i_|) = 1 bound the shaded region in figure 2. A
point to notice is that the two characteristics are almost parallel with the Alfvén line OA but
slowly converge to it as r— 0. It is only well outside the region bounded by these two charac-
teristics that our solution is valid.

Close to the Alfvén line OA, when ¥_is small, $(3_) is undetermined. Elsewhere in the Alfvén
layer, however, the radial flow velocities and magnetic field strengths are

w =80, b= - [(35) +sw, (7.17)

where S(¢_) is given by (7.14). It is perhaps of some interest to note that these solutions

provide us with the zeroth order approximation to the full solution throughout the extensive
boundary layer structure, in which 6/ is order 1.

51 Vol. 284. A.
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8. THE ALFVEN BOUNDARY LAYERS AND CENTRAL DIFFUSION REGION

According to the equations governing the motion of an inviscid perfectly conducting fluid
the tangential components of both magnetic field and fluid velocity may suffer discontinuities
across an Alfvén line. The magnitude of the jump in value of the components is measured by the
jump of S(yr_) (see (7.12)) at yy_ = 0. It is constant along the Alfvén line OA and measures the
finite amount of electric current and vorticity concentrated on OA. For our problem, the situa-
tion is somewhat more complex inasmuch as S(¢_) has a logarithmic singularity as ¢r_— 0,
which renders the solution undetermined before the value ¢_ = 0 is achieved. The singularity
corresponds to large concentrations of electric current and vorticity similar to those noted by
(6.32), (6.33), (6.39) and (6.40). In a fluid of finite viscosity and magnetic diffusivity neither
sheets nor singular concentrations of electric current and vorticity can persist but, as time pro-
ceeds, must diffuse laterally. The subsequent diffusion may proceed in one of two ways. First,
the layer may thicken indefinitely so that the concentrations of electric current and vorticity
eventually disappear. Secondly, the tendency of the sheet to spread laterally may be overcome
by convection at a characteristic velocity. In the former case there is no possibility of abrupt
changes in the flow and magnetic field conditions in the final steady state. In the latter case,
however, a steady state is possible in which the effects of diffusion are confined to a thin region
which we call an Alfvén boundary layer. Outside the layer we may legitimately neglect dissipa-
tion. As in conventional boundary layer theory the influence of the finite size of the Alfvén
boundary layer on the exterior non-dissipative solution is characterized by a small displacement
thickness. This is, however, a high order effect with which we will not be concerned. Conse-
quently, to determine the flow and magnetic field it is sufficient to impose the jump conditions
described in §2 across the Alfvén line.

It cannot be overemphasized that the relevant convective velocity is not the fluid velocity u
but rather one of the characteristic velocities v, or v_ (see (7.2)). In particular, in the Alfvén
layer OA convection along the layer results from the velocity »_. Here the solution is governed
by the equations (7.3) modified to take account of dissipation. They are

(v_-V)o, =—=Vp+v, Vo +v_Vio_, (8.1a)
Hooxov)+1 = —H MR, )7 VR, —), (8-10)
where vy = YM{E(RIY+ REY). (8-1¢)

In order to investigate the structure of the Alfvén boundary layer, we first confirm that the
approximations and results (7-6)—(7-11) of the previous section remain valid. Within the
framework of these approximations, the term v_V?v_ may be neglected in comparison with
v, V?v,. Thus as in §7 the component of v, parallel to the layer is forced by the pressure
gradient but now any singular behaviour is smoothed out by the diffusion term », V2o, Since
Vp and v, V2, are comparable, the term on the right of (8.14) is small of order | Vp|§(= O(R9)),
where L§ is the boundary layer thickness (see (8.74) below). Consequently, in the first approxi-
mation at any rate we may neglect the term on the right of (8.14) in comparison with unity and
Just investigate (v_-V)o, = — Vp+v, Vi, (8.2)
in conjunction with (7.35).

The C_ characteristics are almost straight lines and according to (7.11) are defined approxi-

mately by Yo = @—%(0_@) = const. (8.3)
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If we choose X = 0%y, (8.4)

where LX measures distance normal to the Alfvén line OA, and r as our independent variables,
then the radial component of v, is given approximately by the solution of

6 p o,

Lt = etV ane (8.5)

In the derivation of this equation from (8.2), we have ignored the curvature of the Alfvén line
and neglected all terms which are smaller by an amount of order R~ In R. Once the particular
solution,
vy, = — (8R/[m),

(see (7.12)) of (8.5), which is forced by the pressure gradient dp/0r, has been isolated, the
remaining complementary function, which stems from the two remaining terms, has a simple
physical interpretation. In (8.5), the term v, 0%,,/0X? describes the lateral diffusion of the pas-
sive scalar v,, in an almost uniform stream o»_, while the convection by this nearly parallel

Alfvén layer

11

[ ——

®

«0 -

Alfvén boundary
layer

Ficure 4. The radial velocity #, in the neighbourhood of the Alfvén line 6 = O is plotted against the angle 0.
The radial magnetic field b, is M-%—4,. The thickness Lé of the Alfvén boundary layer is defined by (8.70).
In the case of negligible viscosity A = {1-1R-1In R_}?, and A — 1/y2, as r - o0,

flow o_ is approximated by the term v_,0v,,/0r. The solution of this diffusion problem which
matches with the solution (7.12) in the non-dissipative part of the Alfvén layer when X is of the
order & (or equivalently when In X equals Ind) must satisfy the boundary conditions

0 (X[6— o),
Vyp—> { } (8.6)
28(—98/0%) (X[8-> — o0).
The similarity solution of this problem is well known and yields the solution
vy = — (8R[T) +S(—8/0%) {1 —erf (X/0)} (8.7a)
of (8.5), where 8 = J(dv,orfv_,) = (4v, 1)} (n[8R)%. (8.70)

Indeed, Alfvén boundary layers of this type have been investigated by a number of authors with
application to flows past obstacles (sce, for example, Dix (1963)). The value of the magnetic
field and flow velocity defined throughout the Alfvén layer by (7.12) and (8.7) are illustrated
graphically in figure 4 and a corresponding magnetic field line and streamline are sketched in
51-2
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figure 5. Perhaps the most significant conclusion to be drawn from (8.7) is that diffusion is
confined to a boundary layer of width L&, which increases with distance from the origin as 7.
The Alfvén boundary layer discussed here has its counterpart in the models of Yeh & Axford
(1970) and Sonnerup (1970). The application of (8.5) to determine the Alfvén layer solutions
corresponding to (7.12) and (8.7) for their models is described in Appendix B.

magnetic

field line

streamline

FIGURE 5. A typical streamline and magnetic field line in the vicinity of the Alfvén line OA are sketched. The
radial distance has been suppressed by a log plot and hence 7(6— 0) and In r measure distance normal and
parallel to the layer respectively. Due to the compression the curvature of the streamline in region I and the
magnetic field line in region II outside the Alfvén layer is not apparent.

1I

Alfvén boulndary layer
4'————@——*
Alfvén layer

rope
A
T

; inner region
outer region

Ficure 6. The various asymptotic regions, as r - 00, of the flow are summarized. The Alfvén line, § = O,
separates the inflow region I from the outflow region II. Boundary layer approximations are appropriate
throughout the inner region, § = 0(®), where Lorentz forces and inertia forces are comparable. Elsewhere
in the outer region, ¢ = O(1), inertia forces are negligible. Part of the solution in region I is described by
uniformly valid complex potentials. A small Alfvén layer is located in the neighbourhood of § = @, which
contains the*Alfvén boundary layer

The above analysis confirms that in the limit of zero dissipation the solution can accommodate
discontinuities across the Alfvén line OA, and the various regions of the flow which we have
isolated are summarized in figure 6. The question whether or not similar discontinuities can be
maintained across the Alfvén line OB can now be answered easily. Upon modification of the
above analysis, the equation appropriate to a possible diffusion layer at OB is still (8.5) but the
plus and minus signs appearing as suffixes are all interchanged. Moreover the value of v_, is

UV p=— “/(BR/T':)ﬁ

which is equal in magnitude but opposite in sign to the value of v, at OA. This minor modifica-
tion has disastrous consequences, since it describes convection by an almost uniform stream
towards the origin. The implication is, of course, that any boundary layer structure must
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......

at a finite distance from the origin as suggested by Sonnerup (1970). For our unbounded model
and that of Yeh & Axford (1970), where the discontinuities and singular behaviour must be
initiated at infinity, boundary layers of finite thickness cannot be supported. Consequently, in
the limit of zero dissipation, discontinuities across the Alfvén line OB cannot be permitted.
Vasyluinas (1975) has arrived at the same conclusion via a different argument. By inspection of
Yeh & Axford’s (1970) equations governing the similarity functions f and g (the case n = 0 in
(3.1)) when dissipative effects are included, he argues that a solution of the equations with the
required topological properties is impossible. Since the key roles of convection and diffusion are
isolated in (8.5), the success and failure of layers at OA and OB respectively are rendered self-
evident. Hence, though we could use Vasyliunas’ (1975) argument to show that a similarity
solution of the modified form of (8.5) appropriate to OB is impossible, such a demonstration is
unnecessary.

When viscosity is unimportant so that the ratio R, ;/R; ; is small we may approximate
2v, by M 3Rz} In this case the Alfvén boundary layer thickness L3 reduces to

Ls = r*(2[Ry)3, (8.8a)
where Ry = r(My/M)¥R, , (8.80)

is the magnetic Reynolds number based on the length 7* and the Alfvén velocity at that
distance (see (2.12) and (3.38)). At the ends of the diffusion region, where 7 is unity, the width of
the Alfvén layer is of order LR;E; which by (2.14) is also of order /. As distance from the origin
increases, ¢ increases but the ratio §/r@ of the thickness of the Alfvén boundary layer to the
width of the outflow region II decreases. Since the analysis of this section is valid when ¢ < 70,
we conclude that our solution in the neighbourhood of & = @ is valid when r > 1. On the
other hand the solution is only of use to us if §( —8/@%) is known! This will be the case as close
to the origin as the edge of the central diffusion region only if

M, < 1. (8.9)

Thus in the case when M; < 1, we have established that the solution of the Alfvén boundary
layer developed in this section matches with the solution of the non-dissipative equations
presented in the previous sections everywhere outside the central diffusion region. To solve our
problem completely it only remains to determine the solution inside the central diffusion region
which matches with the inflow conditions, as y/M;—> oo, and the downstream conditions, as
x> 00. In view of the fact that the layer splits into two Alfvén layers, as x — oo, it is not sur-
prising that its structure on the order L length scale is extremely complicated. Though boundary
layer approximations are appropriate, the ensuing non linear problem presents a sobering
prospect for two reasons. First, the existence of two well-defined length scales L and / precludes
the possibility of seeking similarity solutions. Secondly since the transverse structure of the layer
is so complex a power series solution such as that considered by Priest & Cowley (1975) and
Cowley (1975) is likely to have a small radius of convergence; probably no bigger than the
central core, 7*¥ = O([). Nevertheless the physical processes at work in the layer are readily
understood in terms of the merging of the two Alfvén boundary layers which lie in the quadrants
(* >0,y > 0)and (x >0,y < 0). Restricting attention to the Alfvén layer OA, we have seen
above that, since the important convective velocity @_ is known accurately at large x, the mathe-
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matical problem for v, is linear. As x decreases to unity the value of _near the Alfvén line OA is
no longer known since it is influenced by the presence of the second Alfvén layer (about OA’,
say) in the quadrant (¥ > 0, y < 0). The Alfvén layer near OA can no longer be investigated
in isolation and the two Alfvén layers must be investigated simultaneously. Consequently, in
the central diffusion region, which might be called more aptly a double Alfvén layer, a highly
complex non-linear relation exists between v, and v_.

According to the above description of the central diffusion region the convective effect of the
characteristic velocities v, and v_ serves to confine the boundary layer against the competitive
effect of lateral diffusion. One implication is that the propagation of damped Alfvén waves
along the layer plays as important a réle as fluid convection in determining the layer’s struc-
ture. This well known property means, of course, that disturbances initiated at the origin
propagate out along Alfvén lines even in the diffusion region. Now the solution in the layer
evidently responds to the external conditions at the outer edge y > M, but contrary to one’s
intuition the region influenced by the layer is not the outflow region II, as x - co. Instead, con-
vection at the characteristic velocities v_ and v, channels the region in which diffusive effects
are important (see figure 2) into the two distinct Alfvén layers OA and OA’ and here lateral
diffusion quickly eradicates the influence of the central diffusion region (see (8.5)). We there-
fore conclude that in the small A limit the relation between the outflow region 11 and the in-
flow region I owes nothing to the form of the solution in the central diffusion region.

9. AN INTEGRAL CONSTRAINT

When M, is large, there is a region, size £ (> [), near the origin O but outside the central
diffusion region where dissipation is negligible. Here and for some distance out along the Alfvén
layers the similarity solution developed in §§3-7 is inapplicable (see figure 2). Now the model
developed in those sections only provides a solution of the governing equations at sufficiently
large distances from O. Such a solution is not necessarily an approximation to any exact
solution of the governing equations valid throughout all space. Put another way, we may regard
our similarity solution as defining a set of boundary conditions at infinity and ask if any solution
of the governing equations exists which satisfies these conditions, i.e. is the problem well
posed? To some extent this difficult question is pertinent to all values of M, and can only be
answered satisfactorily if asymptotic solutions are produced in all regions of the flow which
match up with each other correctly. Even in the small M; limit we were unable to produce
an approximate solution for the central diffusion region. Nevertheless the arguments of §8
indicated convincingly that this region is passive inasmuch as a solution will exist there which
satisfies the conditions applied at the edge of the diffusion region. The arguments are less
forceful when M, is of order 1 and fail completely when A, is large for the reasons given above.
We are left, therefore, with the intriguing question: is our asymptotic solution only valid
at large r when A is less than some upper bound or is it valid for all M;? Whatever the
answer, it is clear from (3.425) that the important measure of the reconnection rate M, for a
large region size L, is likely to be less than unity.

Attempts have been made by various authors to by-pass the direct determination of the
solution near the origin O, through the construction of certain integral constraints which must
be satisfied by the solution. Most of the constraints appear to yield little useful information. An
integral of Ohm’s law due to Sonnerup (1970) provides one exception. Consider the total
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electric current (ByL/u)I across the quarter disk, radius *, bounded by the lines 0 = 0, {r,

where ) .
I= ff rj 0 dr = f rby . (9.1)
0J0 0

Integration of Ohm’s law (2.10) with respect to 6 followed by application of the symmetry

condition (2.175) yields
L ar dK

(MER,, 1)t 5 =t g (9.24a)

i ox i o
where K= fo Y X do _—fo X o do. (9.28)
Further integration yields (M#‘Rm, ) =t + K (9.3)

(cf. Sonnerup 1970, equations (29) and (33)). The significant feature of this result is that the con-
stant of integration, which is zero, is determined by conditions at the origin (1(0) = K(0) = 0).
It follows that the result provides us with an additional constraint on the full solution which
was never explicitly imposed in the previous sections. On the other hand the similarity assump-
tion (3.2) implies that / and K have the functional forms

I=iR)r, K =k(R)r (9.4)

Consequently the constant of integration only influences very small terms in the expansions of
g, fand p of order e ®(= 1/r) and these are outside the scope of our analysis. Correct to order
r% at any rate our solution automatically satisfies (9.3).

Now within the framework of the approximations made so far the planes of symmetry though
parallel to the x and y axes do not have to be coincident with them. For suppose the neutral
point is located at the point O’(xy, yy), then the only effect upon the solution at large r in
changing the origin from O to O’ is to modify the order /—* correction terms, i.e. the exponen-
tially small terms. Herein lies the true significance of the constraint(9.3) and we may illustrate
it by reference to the Sonnerup (1970) and Yeh & Axford (1970) models. Consider the implica-
tions of Sonnerup’s suggestion that the Alfvén lines OA, OB do not necessarily intersect at
the neutral point O’. In the idealized case of perfect conductivity everywhere (r finite,
(M}R,, |)~1— 0), we must expect that in general the constraint (9.3) will not be satisfied. Rather

we will find that
k= —fn+kyfr?, (9.5)

where £, is a constant. There is, however, one set of solutions which automatically satisfies the

condition
ky = 0, (9.6)

namely the Yeh & Axford similarity form (3.1). Thus though all the Sonnerup solutions at
large r are to leading order similarity (in particular, Yeh & Axford) type solutions, it is only the
very small correction terms associated with the precise location of the origin which are influ-
enced by the condition (9.6). Therefore we are led to conclude that the only models which satisfy
(9.6) have the origin and the neutral point coincident. Physically this means that the size of the
diffusion region goes to zero in the limit of perfect conductivity. If, however, there is a diffusion
region of finite size having finite conductivity, Sonnerup’s suggestion may be valid.


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

408 A. M. SOWARD AND E.R.PRIEST

10. DiscuUssiOoN

The validity of Petschek’s (1964) model for fast magnetic field reconnection was put in doubt
when the alternative models of Sonnerup (1970) and Yeh & Axford (1970) appeared. They
contain two discontinuities in each quadrant and, being of self-similar form, are valid at large
distances from the diffusion region. The object of the present paper has been to search for
asymptotic solutions in a similar spirit to Yeh & Axford but containing, more realistically, only
one discontinuity in each quadrant. We have produced a detailed analytic model for the fast
magnetic field reconnection process which supports Petschek’s qualitative picture (see §3 (%))
and which we regard as putting Petschek’s mechanism on a firm mathematical foundation.
The main differences are that in Petschek’s case conditions are effectively constant in the inflow
and outflow regions whereas in our model the magnetic field strength varies to lowest order as
the square root of the logarithm of the distance from the origin; it increases with distance in
the inflow region and decreases in the outflow region. Also the Alfvén lines curve away from
the incoming flows.

Our asymptotic solution holds when the local Alfvén number, based on the velocity U and
the Alfvén velocity B/ ./(up) in the inflow region I, is small, i.e.

M (= Uy(up)[B) < 1. (10.1)

Since M decreases with distance from the neutral point, the relation (10.1) is always satisfied
provided
r¥ > 2, (10.2)
where % is the distance at which M is unity. When M; < 1, the diffusion regions are relatively
large and the solution is valid everywhere outside them (see figure 2). When M; = O(1), the
diffusion regions are relatively small and the solution only satisfies the governing equations far
away from the central diffusion region. Because of the non-trivial question as to the relevant
boundary conditions (see §9) it is not clear whether or not there exists a solution to the full
m.h.d. equations which joins the asymptotic solution to the central diffusion region solution.
Provided the joining can be accomplished, we believe that our modelisself consistent. The model
is well established when M, is small but not rigorously established when A/ is of order unity.
By contrast with our detailed calculations of the structure of the outflow region II (see §§3
and 5), Petschek (1964) assumed that the conditions there are uniform. Green & Sweet (1966)
and Priest (1972), however, severely criticized Petschek’s mechanism when they tried to take
account of spatial variations. They assumed that the plasma speed in region II decreases as the
square of the distance and found from the shock relations that the gas pressure also decreases.
Then the necessary deceleration can be provided only by the Lorentz force which results from
magnetic field lines bowed dramatically in the opposite direction to that indicated in figure 1a.
This raised two doubts as to the validity of Petschek’s mechanism. It is not clear that a matching
to the central diffusion region is possible and also, if the outward bowing persists in the compres-
sible case, the reversal of the tangential field component is possibly unphysical. For our model
on the other hand, both the gas pressure and the flow speed increase but only logarithmically
with distance in the outflow region. The presence of the term d2F;/d£? in the equation of
motion (5.35) indicates that the acceleration is provided by the Lorentz force which arises from
a mild bowing in just the direction indicated by figure 1a. Therefore, the doubts about the
validity of Petschek’s mechanism, which were raised by Green & Sweet (1966) and Priest (1972),
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do not arise in our model. Furthermore, because of the hyperbolic nature of the problem, it is
not possible to find similarity solutions with the same type of variation along the discontinuities
as was imposed by these authors.

For our model of the Petschek mechanism we can establish, in the limit

M, <1, (10.3)

a set of relations between U,, By, U,, B,, U,, B,, [ and L, where the subscripts i and e denote the
inflow values at x* = 0, y* = LM, and L,, respectively, and the subscript o denotes the outflow
values at ¥* = L, y* = 0. The width of the diffusion region is [ = O(LM,); its length is L. The
value of the local Alfvén number at a distance of order L from the neutral point is determined
from (8.42) by dropping the subscript e. It yields

MM, = 1+ 0(M, In M,). (10.4)

Consequently when M, is small, M is approximately constant along the whole length of the
central diffusion region. It follows immediately from (5.13) that

U, = UM, B,= MB,. (10.5)

These identities together with (2.13), (2.14) and (3.43) give the order of magnitude relations
U, = LU,

Uy = (lpo)™, (10.6)

U,B, = U B, = U,B,

(see Priest & Cowley (1975)), while from (8.85) we have the additional relation
Rm, e/Rm,i = (Le/L) (Mi/Me)%> (10'7)
where R, o = L,V po is the magnetic Reynolds number based on the external conditions and
V, = Be[A/(up) is the external Alfvén speed. This identity together with (2.12) and (3.420)

yields

n/(8M,) = n/(8M,) +%In (R2, . M;M,). (10.8)
For given external conditions (i.e. R, ,fixed), it is readily seen that the derivative dM,/d M,

calculated from (10.8) vanishes when M; = in. Hence according to (10.8) the maximum
possible value of M, is the solution of

Me, max TE/(4 In (R?n,enlMe, ma.x/4))’ (10'9)

which occurs when M; = }n. Indeed for large In Ry, , (a condition unlikely to hold very well in
practice) we have
My mox = /(8 In Ry o) (InRy o > 1). (10.10)
Though M; = %= is less than unity we have violated the stronger condition (10.3) upon which
the analysis is based. Nevertheless because of the importance of the maximum reconnection
rate M, max in application to reconnection theory we feel justified in drawing some conclusions
of a qualitative nature from (10.8) even when M; is of order 1. In particular, in the limit of
large Ry, , the estimate (10.10) of M, ,,, is one half of the value given by Petschek (1964,
equation (31)) and agrees with the modification of Petschek’s result given by Vasyliunas
(1975, equation (47)).
Petschek’s mechanism gives reconnection at a rate which depends largely on the speed with
which some external agency forces magnetic field lines at a large distance to approach the

52 Vol. 284. A.
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neutral point. As the inflow velocity U; increases so the width / and the length L of the diffusion
region shrink in value. We may therefore speculate that there is an upper limit on M, of unity
when the central diffusion region is roughly square (L = [). Such a cut off is to some extent
arbitrary since we have no quantitative justification in proposing an exact numerical bound on
M;. It is perhaps worth noting that when M; > 1 rather than degrading magnetic into kinetic
energy at the Alfvén line the process is reversed. Nevertheless from figure 7 and equation (10.9),
we are led to the remarkable conclusion that the maximum value of M, is in no way related to
the maximum allowed value of M, !

| ]
- 10
0.2 H
1
1
I
I
{
i
1
M, !
! 102
0.1} !
10°
I
10*
10:) 6
;10
10 108
]
t
| ] | |
0 0.4 0.8

M,

Fieure 7. M, is plotted against M, for various values of R,, . lying between 10 and 108, according to (10.8). The
maximum values of M,, namely M, .., are located at the intersection of the curves with the broken line.

Suppose, as above, that M, must lie in the range 0-1. Evidently M, is not determined uniquely
for values of M, between M, 1,y and M, .y, whichupon setting M; = 1in (10.8) isdetermined

by My eye = {1+ (4/7) In (R, M o) . (10.11)

As can be seen from figure 7 the values of M, o4 and M, ., are very similar. For instance,
when R o = 108, M, 1yax — M, iy = 0.001. One can imagine a situation in which due to varia-
tions of the external conditions at large distances, M, is increasing slowly in value. While M,
remains below M, oy, M; is uniquely determined but, as soon as M, reaches M, ., the
possibility exists of M, jumping very quickly in value from M; ; to unity. The result could be
the explosive release of energy which several authors have claimed to be necessary for a solar
flare trigger mechanism with the accompanying impulsive acceleration of particles (see, for
example, Sweet 1969; Sturrock 1966). This suggestion should be regarded, however, as highly
speculative, especially since figures 7 and 8 are strictly valid only when M; < 1.

The existence of a maximum reconnection rate M, y,, confirms the results of Roberts &
Priest (1975), who have recently constructed a model solution of Petschek’s mechanism in a
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finite region with the Alfvén line OA straight. They find the unique value of M, for each value of
the inclination o of OA. As a increases in value, so M, passes through a maximum value
which depends weakly on Ry, .. The maximum value decreases from 0.2 when Ry, . = 10 to 0.02
when R, . = 108 The present analysis complements the results of Roberts & Priest (1975)
since it includes Alfvén line curvature and is valid at large distances. Moreover, it should be
noted that in many applications M, . is possibly given by the condition that the smallest
allowable value of / for the m.h.d. equations to be valid is the ion gyroradius (Sonnerup 1972).

‘ I I I

0.4 —

M, pnox (Petschek)

Ig Ry, .

Ficure 8. Our estimate (10.9) of M, ,,,, is plotted together with Petschek’s estimate
Me,m&x = ﬂ/(4 In (Meg;mame,e)) againSt lg Rm,e'

Our final comment concerns Vasyliunas’ (1975) recent review of the reconnection problem.
He concludes, like us, that Petschek’s mechanism does indeed work, but he considers a finite
region rather than an unbounded one so that, unlike our analysis, effects of the boundary
conditions are allowed to propagate inwards towards the diffusion region. His suggestion is
that, with only one discontinuity in each quadrant, either a Petschek-like compression or a
Sonnerup-like expansion may be present in the external region with the result that M, may take
any value, depending on the exact boundary conditions prescribed at the finite boundary.
This may well be true but it begs the question as to what are the boundary conditions in a given
application and, more important, it should be stressed that it is not necessarily possible to pre-
scribe any values you like for the normal components of magnetic field and plasma velocity
at the boundary. In our view, Vasyliunas’ suggestion should therefore be regarded as specula-
tive until it can be demonstrated rigorously.

The work described here was initiated while the authors were summer visitors at the National
Center for Atmospheric Research, Boulder, Colorado, U.S.A. One of us (A.M.S.) attended
the Advanced Study Program, the other (E.R.P.) the High Altitude Observatory with the
help of a travel grant from the Carnegie Trust.
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APPENDIX A

It was pointed out in §3 that the similarity forms
¥ o=rtng(0), x = r+f(0), p=r®PO) (n>0), (A1)
do not provide approximations to solutions of the reconnection problem. Arguments are put
forward here to support this claim based solely on the condition that there is no discontinuity or
singular behaviour permitted at the first Alfvén line OB.
According to (A 1) the ratio ¥/x tends to zero, as r— o0, except on the line & = 6, where
f(6,) = 0 (see figure 3). In this limit inertia is only important in a thin boundary-layer region
adjacent to the line & = 6, where the ratio /i is of order 1. Itis here that the Alfvén lines OA and
OB are located. Elsewhere the flow is slow and the magneto-static approximation
Vp = (b-V)b (A 2)
and the frozen field equation (wxb), =—1 A 3)
are appropriate. The 0-component of (A 2) together with (A 1) imply that P is independent
of @ so that P = const. (A 4)
Upon taking the scalar product of (A 2) with b we obtain the first integral
p—1b* = function of ¥, (A 5)

which states that the fluid pressure p —1b? is constant on magnetic field lines. The similarity
assumption (A 1) implies that the function appearing on the right of (A 5) must be proportional
to |x|2el+®), Tt follows that

P =3[+ (n+ 1)+ plf20H (" = dffdd), (A 6)

where f is an arbitrary constant.
Within the framework of the similarity assumption (A 1) the Alfvén line OA, where ¢ = ¥,
almost coincides with the line, 6 =6, (f(6) =0 (A )

for large r. In the inflow region I (6, < 6< }n) fis negative and attains its minimum value
—ay (say) at 0 = }n. Hence we set

, SO0) = —ar f1(0) (A8)

so that by (A 6) f; satisfies
AP = (1) (fnen —2) 4 (1 = fencm), (A 9a)
where Ar = (1+n)2+2fa7 20, P = A4} (A 9d)

There are three possible cases which are distinguished by A; being negative, zero or positive.
Case (i): A; < 0. The function f; oscillates between 1 and a smaller positive constant, as
increases. Since fj is never zero a reconnection model is out of the question.
Case (i1): A; = 0. The solution (A 9) is

f1 = (sinf)4+n, (A 10)
corresponding to the unidirectional magnetic field b of strength

—(1+n)ary™, (A 11)
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parallel to the negative x-axis. The stream function for the resulting fluid flow is determined
from (A 3). Itis
_ 1 cos 6
&= (1+n) ay (sin 6)*

(A 12)

Since 6, is zero, inertia is important only in a thin outflow region adjacent to the axis of sym-
metry, 6 = 0. Indeed according to (A 1), (A 8), (A 10) and (A 12) the inertia and Lorentz

forces are comparable when
0 = O(r—2mi+m), (A 13)

The resulting boundary layer structure is investigated by stretching the 6 coordinate and
attempting the similarity solution
U= 7%(1+m)G(g)’ X = r%(1+’")F(§), P =

o
1—m

ri-m, (A 14a)

where

E=r-m0 (m=1/2n+1) < 1). (A 140)
Since A; = 0 implies that P is zero, the arbitrary constant &, which determines a relatively small
pressure gradient in the boundary layer, is not determined by the first approximation (A 1)
to the outer solution. Instead the value of @ determined by the boundary layer solution imposes
a boundary condition on the higher order approximations to the outer solution. On the other
hand, the functions G and F, must satisfy the boundary conditions

2m '

G— Tma g-A-—mizam - [y g gAAmi2zm - gs £ 5 o0, (A 15)
in order that a match can be achieved with the outer solution (A 10) and (A 12). Substitution of
(A 14) into the radial component of the equation of motion (2.54) and Ohm’s law (2.105)
yields

1 _
tmeogr_tzm

1+m 1—m
9 4 2
5 2 G = = FF'———F'—q, (A 164)

G- GFY) = 1, (A 165)

upon neglect of dissipation. Differentiation of (A 1654) and elimination of G" from (A 16a)

yields
PG ory = F {1_“2'_'” (G2~ F") —oc;. (A 17)
The Alfvén lines OB and OA correspond to the points £5 and £, at which F equals — G and
G respectively. The points £ and £ 4 are singular points for the system of third order differential
equations (A 16). The general solution of these equations possesses three arbitrary constants.
By demanding that the solution is analytic at § = £, one constant is fixed and we find that the
most general solution valid in the interval £, < £ < co, which contains &5, is

N (= T = WS == I

where £ and & are the remaining two arbitrary constants and the positive or negative square

roots may be taken. A solution of this type cannot satisfy the boundary conditions (A 15), when

m < 1, and so does not provide us with a solution of the reconnection problem. There appears
52-3
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414 A. M. SOWARD AND E.R. PRIEST

little doubt, however, that if the anlyticity condition is not imposed at £ = £, solutions can be
obtained, similar in spirit to those of Yeh & Axford (1970).
The limit m— 1 is of some interest. For if we let

atf =0, a=-}1-md (A 19)

equations (A 18) and (A 15) are compatible when m = 1! But the solution developed here is
only valid for m < 1 and anyway the special case m = 1, investigated by Yeh & Axford (1970),
also fails to satisfy the analyticity requirement. The result does, however, suggest that Yeh &
Axford are close to the correct solution. It is for this reason that we attempt in this paper to
modify their similarity solution (z = 0) by allowing g and f to vary slowly with respect to radial
distance through their explicit dependence on Inr (see (3.2)) as well as 6.

Case (ii1): Ay > 0. From (A 94), 6, may be determined. It is

In—0, = f: dr/y[(1 +n)? (72004 —72) 4 Ag (1 — 720OEW) T = 1(2y) (A 20q)

IA) < I(0) = . (A 20b)

Hence 0, lies in the range 0 to 37 and only takes the value zero, when A; = 0. A solution similar
to (A 8) is constructed in the outflow region II (0 < 6 < 6,). Here fis positive and attains its
maximum value ay; (say) at @ = 0. Therefore, we set

S(0) = anful0),. (A 21)
where fi7 is the solution of (A 94) normalized by the condition
Ju(0) = 1. (A 22)

All suffixes in (A 9) are replaced by II. The constants a;; and Ay are not arbitrary but are
determined by the two equations

I(A) +1(Aqr) = ¥, P = $2qaty. (A 23)

The former condition ensures that 6, computed for regions I and II is the same. The latter
condition ensures that the total pressure is continuous across the line § = 6,.
The flow in regions I and II is determined from the frozen field equation (A 3). Substitution
of (A 1) yields
(=n)gf' = (1+ngf = -1 (A 24)
Once f'is determined from (A 9), g can be determined from (A 24). The solution satisfying the
boundary condition 3 = 0 at @ = 0, }m is

deo’

(1+7Z) [f 0/ ]2[(1+n) (00 <0< %TC),
50) = T (A 25)
Trm et fo oy (0 <0<
At 0 = 6,, (A 9) and (A 25) indicate that ¢ and f* are continuous, provided 0 < n < 1. In
fact g and f are given by

f (1—n)/(14+n)

(1+n

1
e (P S CTO S =—J(2P)(0-6,) (A 26)

to leading order in both regions I and II, when |6 —6,| is small.
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To lowest order at any rate the passage from region I to region II is smooth. A closer inspec-
tion of the higher order terms reveals difficulties. First a more accurate representation of f; in
the vicinity of 6, determined by (A 9a) is

Fi = V) § g gt A (1 )2 A] gD (> 0), (A 20)

where ¢ = 6 —6,. Second the corresponding expansion for g is

¢ = o= O (A 280)
where
2L 0 <n <),
— (4 <n).
14n

Clearly, when 7 lies between 0 and 1, ¢ lies between 0 and %. It follows that the radial velocity
which is proportioned to g’ tends to infinity, as ¢— 0. Indeed when n > 1, gitselftends to infinity!
For this reason attention is restricted to the less singular case 0 < n < 1.

Evidently the neglect of inertia is unjustified in the immediate vicinity of @ = 6,. Here inertia
and Lorentz forces are comparable when ¥ and y are of the same size. Since this occurs when ¢
is order r—2", we attempt the boundary layer solution

rl_n 1-n(1+42¢,
N EoN e
X = —/(2P) rI=ng 4 r1-n(+20 F(£), (0 <n < 1,§=rinp). (A 29)
= Prin aan(l—q)
P = Ty

Substitution of these expressions into the radial component of the equation of motion (2.54) and
Ohm’s law (2.11) yields the pair of second order differential equations

(1/N(2P)G" = J(2P){2n(1 —q) F'—(1—n) EF"} —a, (A 304)
(1/J@P)F" = J(2P){(1 —n(1 +29)) G—(1—n) £G} (A 300)

(cf. the third order pair (A 164, b)). As £ oo, the two complementary functions of (A 30) may
be distinguished by the asymptotic laws

G, ~ groma0-m o~ g-2nall-n) }

1
G, ~ £21-00-m) [ ~ gl2n0-9/0-n) (A 31)

Now when n < %, F, matches with (A 27), as £ oo but G, becomes too large to match with
(A 28): while when ¥ < n < 1, G, matches with (A 28), as £ oo, but F, becomes too large to
match with (A 27). Therefore, there is only one boundary layer solution which satisfies the
matching conditions as §— co. This unique solution does not satisfy the analyticity condition
at £ = 1/[2P(1 —n)], where the first approximations to ¢ and — x are equal. This further con-
dition is only satisfied by a certain linear combination of G, and G,. The case n = 1 requires
special consideration but similar results follow. We must conclude that the boundary conditions
on the boundary layer solution are too restrictive and that there is no solution to our problem
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416 A. M. SOWARD AND E. R. PRIEST

Of course, if non-analyticity is permitted at both Alfvén lines, solutions could be constructed as
in case (ii) above.

The conclusion arrived at for case (iii) appears perfectly reasonable. Indeed one might
anticipate that once inertia is significant, as it is near @ = 6, it would remain significant into the
outflow region II. This is, however, contrary to the hypothesis that Lorentz forces dominate
in both regions I and II. It is for this reason that case (ii) above in which region II collapses into
the boundary layer is more attractive. It is unfortunate that case (ii) doesn’t work either!

AprrPENDIX B

The two Alfvén lines OB and OA have their counterparts in the analyses of Yeh & Axford
(19770) and Sonnerup (1970). Infigure 5 of Yeh & Axford’s paper they correspond to the straight
lines 2’ and 4’ respectively in the top left quadrant. Our detailed analysis of the Alfvén layer
in the neighbourhood of OA is directly applicable to the flow and magnetic field in the vicinity
of 4’. Indeed the radial component of v, is determined from (8.5) but (7.8)—(7.10) are replaced
by

p=oaR, v_,=1[/h = const (O = const), (B 1)
where « is defined by Yeh & Axford (1970, equation (184)). Outside the Alfvén boundary
layer the solution corresponding to (7.11), (7.12) and (7.14) is

V., =—ahR+28(Y_) (= ahIn|0-0)), (B 2a)

where
Yo =—r(0-0)h, (B 2b)
S(y_) = 3ok In (hly_]), (B 2¢)

while inside the Alfvén boundary layer the solution corresponding to (8.7) is

vy, = —ahR+28(8/h) (= ahln (8]r)), (B 3a)
where

& = J(4hv, 7). (B 3b)
Here (B 2a) describes the limiting behaviour of their solution, as [0 —@|— 0. The Alfvén
boundary layer solution (B 3) just indicates that the ever increasing value of —v,,, as 6+ 6, is
cut off when dissipative effects become significant. The Sonnerup case @ = 0 is even simpler,
since the term —aAR in (B 2a) is absent and the corresponding Alfvén boundary layer solution
is
vy, = {S(0+)—=8(0-)} erf (X/8) +S5(0+) +5(0—). (B 4)
A similar jump occurs in Yeh & Axford’s (1970) model but it is not apparent in the zero order
solution (B 3).

Whereas the singular behaviour in the vicinity of the line 4’ is acceptable, the singularity at
the first Alfvén line 2’ is not. The solution fails at the latter line for the reasons given in §8 for the
Alfvén line OB. It is perhaps worth noting that the Alfvén layer solutions (B 2) and (B 3) for
the Yeh & Axford (1970) model has some similarity with the Alfvén layer solutions (7.12) and
(8.7). Our solution is, however, less singular in that v,, does not vary significantly in size (it
remains order R?) and there is no reverse flow (cf. figure 4 and Yeh & Axford (1970), figure 5).
In both cases the singular behaviour can be traced to the pressure gradient.
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